1 A settling curve modeling method for quantitative description of the dispersion stability of carbon nanotubes in aquatic environments
Lixia Zhou, Dunxue Zhu, Shujuan Zhang and Bingcai Pan

11 Antimony leaching release from brake pads: Effect of pH, temperature and organic acids
Xingyun Hu, Mengchang He and Sisi Li

18 Molecular diversity of arbuscular mycorrhizal fungi at a large-scale antimony mining area in southern China
Yuan Wei, Zhipeng Chen, Fengchang Wu, Hong Hou, Jining Li, Yuxian Shangguan, Juan Zhang, Fasheng Li and Qingru Zeng

27 Elevated CO₂ facilitates C and N accumulation in a rice paddy ecosystem
Jia Guo, Mingqian Zhang, Xiaowen Wang and Weijian Zhang

34 Characterization of odorous charge and photochemical reactivity of VOC emissions from a full-scale food waste treatment plant in China
Zhe Ni, Jianguo Liu, Mingying Song, Xiaowei Wang, Lianhai Ren and Xin Kong

45 Comparison between UV and VUV photolysis for the pre- and post-treatment of coking wastewater
Rui Xing, Zhongyuan Zheng and Donghui Wen

51 Synthesis, crystal structure, photodegradation kinetics and photocatalytic activity of novel photocatalyst ZnBiYO₄
Yanbing Cui and Jingfei Luan

62 Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer
Huaiyu Fu, Mei Zheng, Caiqing Yan, Xiaoying Li, Huiwang Gao, Xiaohong Yao, Zhigang Guo and Yuanhang Zhang

71 Flower-, wire-, and sheet-like MnO₂-deposited diatomites: Highly efficient absorbents for the removal of Cr(VI)
Yucheng Du, Liping Wang, Jinshu Wang, Guangwei Zhong, Junshu Wu and Hongxing Dai

82 Methane and nitrous oxide emissions from a subtropical coastal embayment (Moreton Bay, Australia)
Ronald S. Musenze, Ursula Werner, Alistair Grinham, James Udy and Zhiguo Yuan

97 Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge
Xinbo Tian, Chong Wang, Antoine Prandota Trzcinski, Leonard Lin and Wun Jern Ng

106 Phosphorus recovery from biogas fermentation liquid by Ca-Mg loaded biochar
Ci Fang, Tao Zhang, Ping Li, Rongfeng Jiang, Shubiao Wu, Haiyu Nie and Yingcai Wang

115 Characterization of the archaeal community fouling a membrane bioreactor
Jinxue Luo, Jinsong Zhang, Xiaohui Tan, Diane McDougald, Guoqiang Zhuang, Anthony G. Fane, Staffan Kjelleberg, Yehuda Cohen and Scott A. Rice

124 Effect of six kinds of scale inhibitors on calcium carbonate precipitation in high salinity wastewater at high temperatures
Xiaochen Li, Baoyu Gao, Qinyan Yue, Defang Ma, Hongyan Rong, Pin Zhao and Pengyou Teng

131 Experimental and molecular dynamic simulation study of perfluorooctane sulfonate adsorption on soil and sediment components
Ruiming Zhang, Wei Yan and Chuanyong Jing

139 A fouling suppression system in submerged membrane bioreactors using dielectrophoretic forces
Alaa H. Hawari, Fei Du, Michael Baune and Jorg Thöming

(continued on inside back cover)
CONTENTS

146 A 1-dodecanethiol-based phase transfer protocol for the highly efficient extraction of noble metal ions from aqueous phase
Dong Chen, Penglei Cui, Hongbin Cao and Jun Yang

151 Intracellular biosynthesis of Au and Ag nanoparticles using ethanolic extract of *Brassica oleracea* L. and studies on their physicochemical and biological properties
Palaniselvam Kuppusamy, Solachuddin J.A. Ichwan, Narasimha Reddy Parine, Mashitah M. Yusoff, Gaanty Pragas Maniam and Natanamurugaraj Govindan

158 Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM (1,1) model
Yan An, Zhihong Zou and Yanfei Zhao

165 Individual particle analysis of aerosols collected at Lhasa City in the Tibetan Plateau
Bu Duo, Yunchen Zhang, Lingdong Kong, Hongbo Fu, Yunjie Hu, Jianmin Chen, Lin Li and A. Qiong

178 Design and demonstration of a next-generation air quality attainment assessment system for PM$_{2.5}$ and O$_3$
Hua Wang, Yun Zhu, Carey Jang, Che-Jen Lin, Shuxiao Wang, Joshua S. Fu, Jian Gao, Shuang Deng, Junping Xie, Dian Ding, Xuezhen Qiu and Shicheng Long

189 Soil microbial response to waste potassium silicate drilling fluid
Linjun Yao, M. Anne Naeth and Allen Jobson

199 Enhanced catalytic complete oxidation of 1,2-dichloroethane over mesoporous transition metal-doped γ-Al$_2$O$_3$
Abbas Khaleel and Muhammad Nawaz

210 Role of nitric oxide in the genotoxic response to chronic microcystin-LR exposure in human-hamster hybrid cells
Xiaofei Wang, Pei Huang, Yun Liu, Hua Du, Xinan Wang, Meimei Wang, Yichen Wang, Tom K. Hei, Linjun Wu and An Xu
Phosphorus recovery from biogas fermentation liquid by Ca–Mg loaded biochar

Ci Fang¹, Tao Zhang¹,⁎, Ping Li¹, Rongfeng Jiang¹, Shubiao Wu², Haiyu Nie³, Yingcai Wang¹

¹. Key Laboratory of Plant–Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. E-mail: 948376144@qq.com
². College of Engineering, China Agricultural University, Beijing 100083, China
³. College of Science, China Agricultural University, Beijing 100193, China

ARTICLE INFO

Article history:
Received 19 April 2014
Revised 12 June 2014
Accepted 1 August 2014
Available online 7 January 2015

Keywords:
Phosphorus
Ca–Mg loaded biochar
Biogas fermentation liquid
Recovery

ABSTRACT

Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar (Ca–Mg/biochar) application for P recovery from biogas fermentation liquid. The physico-chemical characterization, adsorption efficiency, adsorption selectivity, and postsorption availability of Ca-Mg/biochar were investigated. The synthesized Ca–Mg/biochar was rich in organic functional groups and in CaO and MgO nanoparticles. With the increase in synthesis temperature, the yield decreased, C content increased, H content decreased, N content remained the same basically, and BET surface area increased. The P adsorption of Ca–Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360 min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid–liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63 mg/g. The P adsorption selectivity of Ca–Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca–Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360 min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid–liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63 mg/g. The P adsorption selectivity of Ca–Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca–Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360 min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid–liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63 mg/g. The P adsorption selectivity of Ca–Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca–Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360 min.

Introduction

Phosphorus (P), as an essential element in the life process, may run out in several decade years (Gilbert, 2009). Meanwhile, a large number of P losses from the environmental processes (Elser and Bennett, 2011). In China, biogas fermentation liquid containing a large amount of P is the most important by-products of biogas engineering. The unreasonable treatment of biogas fermentation liquid may not only lead to P water eutrophication, but may also result in nonrenewable P resource (Loria et al., 2007). Hence, P recycling, that is, the recovery of P from biogas fermentation liquid and its reuse as fertilizer resource, is a new research focus.

Numerous P recovery technologies, such as chemical precipitation, biological P uptake, and adsorption, have been developed. However, chemical precipitation process may consume expensive chemicals and produce large amounts of chemical waste.
sludge (Zhang et al., 2014). Meanwhile, biological P uptake may be limited by the lack of carbon source and the difficult of culturing microorganisms (Rittmann et al., 2011). Carrying out adsorption has the advantages of easy controllability and low consumption (Yao et al., 2013). Recently, the application of biochar as an environment-friendly adsorbent has attracted attention, especially in P recovery studies.

Biochar made from agricultural waste corn cob can be used for P recovery from agricultural wastewater biogas fermentation liquid. The P postsorption biochar can be reused as fertilizer for crop growth. Finally, crop wastes can be utilized to synthesize biochar. The easy controllability and low consumption of P adsorption can achieve environment and agriculture P recycling. However, low efficiency and poor selectivity hamper the application of biochar adsorption for P recovery from wastewater. Hale et al. (2013) found that biochar only adsorbed 37.2% and 24.7% P. Yao et al. (2011b) demonstrated that the coexisting anions, Cl\(^-\), NO\(_3\)-, and HCO\(_3\)- can decrease P adsorptive selectivity ratio by 4.3%, 11.7%, and 41.4%, respectively. To enhance P adsorption efficiency and selectivity, several researchers have developed new functional materials by loading cations, such as La(OH)\(_3\)-modified exfoliated vermiculites (Huang et al., 2014) and Fe-treated artificial zeolite (Johan et al., 2013).

The usability value of P postsorption biochar is important for its application of P reuse as agricultural fertilizer. Hale et al. (2013) indicated that the cacao-shell-made biochar can release 1484 ± 45 mg/kg of P after postsorption. However, the P available character of postsorption cation modified biochar has not been sufficiently studied.

In the present study, calcium and magnesium loaded biochar (Ca-Mg/biochar) was developed for P recycling. The Ca-Mg/biochar was synthesized at 300°C (Ca-Mg/B300), 450°C (Ca-Mg/B450), and 600°C (Ca-Mg/B600), and its characterization, adsorption efficiency, and selectivity were examined. The P availability of postsorption Ca-Mg/biochar was investigated.

1. Experiments

1.1. Materials

For the biochar sample, the ground corn cob was initially dipped in MgCl\(_2\) solution at a mass to volume ratio of 1:3 for 2 hr and then dried at 110°C. Afterwards, the dried Mg loaded corn cob was dipped in CaCl\(_2\) solution at a mass to volume ratio of 1:3 for 2 hr and then dried at 110°C. The Ca-Mg loaded corn cob was respectively synthesized at 300°C, 450°C, and 600°C for 3 hr with nitrogen gas (limited oxygen), and then sieved into 0.1-0.2 mm. Finally, the synthesized Ca-Mg/biochar sample was cleaned with deionized water (DI) to remove residue surface ash. The Ca-Mg/biochar sample was dried and sealed in a container before use.

For the wastewater sample, the biogas fermentation liquid was extracted from a biogas fermenter in a pig farm near Beijing. The wastewater sample was centrifuged, filtered, and stored in an icebox prior to experiments. The component parameters are as following: pH 8.3, COD 850 mg/L, NH\(_4\)-N 620 mg/L, K\(^+\) 253 mg/L, NO\(_3\)-N 215 mg/L, PO\(_4\)\(^{3-}\) 62 mg/L, and Cl\(^-\) 106 mg/L.

1.2. P recovery efficiency test of Ca-Mg/biochar

For the kinetic adsorption, 0.2 g Ca-Mg/biochar was mixed with 20 mL biogas fermentation liquid, and then shaken at 200 r/min at 303 ± 0.5 K. The supernatant was collected at a specific interval time.

For the adsorption isotherm, 0.2 g Ca-Mg/biochar was mixed with 20 mL biogas fermentation liquid or mixed biogas fermentation liquid with NaH\(_2\)PO\(_4\) to obtain the initial P concentration range of 30 to 4000 mg/L, and shaken at 200 r/min at 288 ± 0.5, 303 ± 0.5, and 318 ± 0.5 K for 12 hr until it achieved adsorption equilibrium.

1.3. P recovery selectivity test of Ca-Mg/biochar

For determination of the pH influence, 0.1 g Ca-Mg/biochar was mixed with 20 mL biogas fermentation liquid. The solution was adjusted at the given experimental pH of 4 to 10 and then shaken at 200 r/min at 303 ± 0.5 K for 12 hr.

To evaluate the influence of coexisting ions, 0.1 g Ca-Mg/biochar was mixed with 20 mL biogas fermentation liquid and P synthesis solution (DI mixed with NaH\(_2\)PO\(_4\) at 62 mg/L P concentration) at pH = 9, and then shaken at 200 r/min at 303 ± 0.5 K for 12 hr.

1.4. P available test of postsorption Ca-Mg/biochar

For the continuous extraction, 0.1 g postsorption Ca-Mg/biochar (0.1 g Ca-Mg/biochar mixed with 2000 mL biogas fermentation liquid at 303 ± 0.5 K for 12 hr) was mixed with 120 mL DI or DI with 2% citric acid (citric acid DI), and then shaken at 200 r/min at 303 ± 0.5 K. The supernatant was collected at a specific reaction time.

For the interval extraction, after continuous extraction, 0.1 g postsorption Ca-Mg/biochar was mixed with 120 mL DI or citric acid DI and then shaken at 200 r/min at 303 ± 0.5 K. The supernatant was replaced with fresh extraction solution every 24 hr. The interval extraction was repeated six times.

1.5. Analysis

Ca-Mg/B300, Ca-Mg/B450, Ca-Mg/B600, and ground corn cob were analyzed by CHN element analyzer (vario EL, Hanau, Germany), BET Surface Area Analyzer (BET, ASAP 2020, Atlanta, Georgia, USA), Fourier Transform Infrared Spectrometer (FT-IR, Magna-IR 750, Washington, USA), and Transmission Electron Microscope with Energy Dispersive X-ray spectrometer (TEM-EDX, JEM-2100F, Tokyo, Japan).

The collected supernatants were quickly filtered and measured. The POC−P concentrations of supernatant were measured according to standard methods (APHA, 2012, 4500-P C. vanadomolybdophosphoric acid colorimetric method). All the experiments were repeated three times and the average values were calculated.

2. Results and discussion

2.1. Characterization analysis

Yield analysis (Table 1) showed the yield weight of Ca-Mg/biochar decreased from 58.09% to 36.97% with increasing synthesis temperature. The analysis of CHN elements showed that with increasing synthesis temperature, C content...
increased from 43.29% to 60.97%, H content decreased from 5.00% to 2.19%, and N content was obviously unchanged. The change in C and H content of Ca–Mg/biochar demonstrated chemical bond fractures and material composition changes (Demirbas, 2004). N content remained unchanged because no nitrogenous volatile materials were formed (Gaskin et al., 2008). In general, the thermal decomposition of hemicellulose, cellulose, and lignin, as the main components of corncob, occurred in the temperature range of 190–320°C, 280–400°C, and 320–450°C, respectively (Strezov et al., 2012).

The flammable compositions of corncob, such as cellulose, hemicelluloses, and lignin, were destroyed and volatilized with increasing synthesis temperature (Al-Wabel et al., 2013). BET surface area analysis (Table 1) showed that the BET surface area of Ca–Mg/biochar increased with increasing synthesis temperature. The carbon structure of Ca–Mg/biochar was varied according to different synthesis pyrogenation processes, and numerous mesopores were generated in Ca–Mg/biochar. About 50% amylum and 30%–40% cellulose content of ground corncob were decomposed and generated carbon structure mesopores when pyrogenation temperature was lower than 500°C, or resulted in carbon structure collapse when pyrogenation temperature was increased to 600°C (Tang et al., 2013).

FT-IR analysis (Fig. 1a) detected the chemical bond structure of organic components for Ca–Mg/biochar and corncob. With increasing synthesis temperature, the characteristic peaks at 3274 cm\(^{-1}\), 2936 cm\(^{-1}\), 2896 cm\(^{-1}\), and 1000–1400 cm\(^{-1}\) of ground corncob disappeared. The O–H, N–H, methyl (–CH\(_3\)), and ethyl (CH\(_2\)) were extremely unstable and ruptured with ease at high temperature level. The characteristic peaks at 3420 cm\(^{-1}\), 1630 cm\(^{-1}\), 1420 cm\(^{-1}\), 800–900 cm\(^{-1}\), and 500–800 cm\(^{-1}\) of Ca–Mg/biochar were stable and were enhanced with increasing synthesis temperature (Hossain et al., 2011). The presence of C=O, C=C (Chen et al., 2008), –COOH, CH\(_2\)O, and Mg–O and O–Mg–O (Zhang et al., 2013) were formed in Ca–Mg/biochar. The characteristic peaks at 3420 cm\(^{-1}\) deepened with increasing synthesis temperature which indicated that more C=O and C=C were formed. Novak et al. (2009) reported that poly-condensed aromatic C-type compounds can be formed in biochar when the synthesis temperature is above 400°C. The results of FT-IR analysis in the present study indicated that the synthesized Ca–Mg/biochar was rich in organic functional groups of hydroxyl, carboxyl, carbonyl, and methoxyl, which were helpful for adsorption (Geng et al., 2009).

TEM analysis (Fig. 1b–d) showed that with increasing synthesis temperature of Ca–Mg/biochar, the number of mesoporous structures increased and the distribution of mesoporous structures turned from ordered to disordered. The number and distribution of mesopores are important factors for Ca–Mg/biochar adsorption. A considerable number of nanoparticles were present in the mesoporous structures of Ca–Mg/biochar. The characteristic peaks of Mg and Ca in EDX...
The P adsorption equilibriums of Ca and Ca beet tailings, and tomato leaves, respectively and obtained the 2013) synthesized biochar through anaerobic digested sugar biochar reported in previous publications. Yao et al. (2011b, 2013) synthesized biochar through anaerobic digested sugar beet tailings (0.00259 min$^{-1}$). Therefore, Ca-Mg/biochar was faster than that of other kinds of biochar (Zhang et al., 2013).

Three kinetic models including pseudo first-order (Eq. (1)), pseudo second-order (Eq. (2)) and particle diffusion equation (Eq. (3)) were used to fit the P adsorption kinetics of Ca–Mg/biochar.

\[
\ln(Q_e - Q_t) = \ln Q_e - k_1 t \\
\frac{t}{Q_t} = \frac{1}{k_2 Q_e^2} + \frac{t}{Q_e} \\
Q_t = k_{id} t^2 + C
\]

where, \(Q_e\) (mg/g) represents the P adsorbed amount at adsorption equilibrium; \(Q_t\) (mg/g) represents the P adsorbed amount at adsorption time \(t\); \(k_1\) (min$^{-1}$), \(k_2\) (g/(mg·min)); and \(k_{id}\) (g/(mg·min)) represent the reaction rate constants; and \(C\) is a constant related to boundary layer thickness. Table 2 shows the P adsorption kinetic parameters of Ca–Mg/biochar.

The P adsorption of Ca–Mg/B300 and Ca–Mg/B450 was confirmed to the pseudo second-order kinetic and indicated that P adsorption was mainly controlled by chemical actions. The chemical combination of nano-CaO and nano-MgO particles with P was the major reaction rate control step for P adsorption. The P adsorption of Ca–Mg/B600 was confirmed to the pseudo first-order kinetic and indicated that the P adsorption reaction rate was mainly controlled by physical actions. \(k_1\) and \(k_2\) represent the P adsorption power of Ca–Mg/biochar. The \(k_1\) of Ca–Mg/B300 and Ca–Mg/B450 were 0.00328 and 0.00529 (g/(mg·min)), respectively, which were six to ten times faster than that of biochar made from tomato leaves (0.000533 g/(mg·min)) (Yao et al., 2011b). \(k_1\) of Ca–Mg/B600 was 0.02034 min$^{-1}$, which was 7.85 times faster than that of biochar made from anaerobic digested sugar beet tailings (0.00259 min$^{-1}$) (Yao et al., 2011b). Therefore, Ca–Mg/biochar quickly reached P adsorption equilibrium. The particle diffusion fitting equation of Ca–Mg/biochar did not pass through the origin, which indicated that the P adsorption process was also influenced by particle internal diffusion action (Venkata Mohan et al., 2002).

Table 2 – P adsorption kinetic parameters of Ca–Mg/biochar.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pseudo first-order</th>
<th>Pseudo second-order</th>
<th>Piratical diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(k_1) (Q_b) (R^2)</td>
<td>(k_2) (Q_e) (R^2)</td>
<td>(k_{id}) (C) (R^2)</td>
</tr>
<tr>
<td>Ca–Mg/B300</td>
<td>0.01090 4.8194 0.9756</td>
<td>0.00328 4.8715 0.9795</td>
<td>0.01494 4.5002 0.8086</td>
</tr>
<tr>
<td>Ca–Mg/B450</td>
<td>0.01455 4.8912 0.9567</td>
<td>0.00529 4.9376 0.9756</td>
<td>0.01636 4.5572 0.7549</td>
</tr>
<tr>
<td>Ca–Mg/B600</td>
<td>0.02034 4.9471 0.9883</td>
<td>0.00765 4.9948 0.9842</td>
<td>0.01628 4.6245 0.6557</td>
</tr>
</tbody>
</table>

Note: \(k_1\) represents reaction rate constant of pseudo first-order adsorption kinetic model. \(Q_b\) represents the P adsorbed amount at adsorption equilibrium. \(R^2\) represents relevant coefficient. \(k_2\) represents reaction rate constant of pseudo second-order adsorption kinetic model. \(k_{id}\) represents reaction rate constant of piratical diffusion adsorption kinetic model. \(C\) is a constant relate to boundary layer thickness.
2.2.2. Adsorption isotherms
The P adsorption isotherm of Ca–Mg/biochar (Fig. 3) is described by three kinds of isotherm equations.

The Freundlich adsorption isothermal equation describes the non-ideal adsorption on non-uniform surface, which can be expressed as follows:

\[Q_e = K_F C_e^{1/n} \]

(4)

Langmuir adsorption isothermal equation describes the monolayer adsorption on uniform surface, which can be expressed as follows:

\[Q_e = \frac{Q_m K_L C_e}{1 + K_L C_e} \]

(5)

The Langmuir–Freundlich adsorption isothermal equation describes the integrated empirical adsorption isothermal equations of Freundlich and Langmuir. The equation can be expressed as follows:

\[Q_e = \frac{Q_m K C_e^{1/n}}{1 + K C_e^{1/n}} \]

(6)

where, \(K_F \) ((L/g)\(^{1/n}\)), \(K_L \) (L/g), and \(K \) (L/g) represent the constants of the Freundlich, Langmuir, and Langmuir–Freundlich adsorption isothermal equations, respectively; \(1/n \) is a parameter relevant to the reaction strength between adsorbed molecules and adsorbent surface; and \(Q_m \) (mg/g) denotes monolayer adsorption capacity.

The Freundlich model and Langmuir–Freundlich model matched the experimental data better (\(R^2 > 0.99 \)) than the Langmuir model (Table 3). It indicated that Freundlich adsorption model was the main adsorption type. In the Freundlich model, \(1/n \) value represents the heterogeneity of the site energies, which were divided into five levels (Tseng and Wu, 2008). With decreasing \(1/n \) value, the adsorption became more favorable. The \(1/n \) values of Ca–Mg/biochar for P adsorption were between 0.6 and 0.8 and belong to pseudo-linear level adsorption. With increasing synthesis temperature, the \(1/n \) values of Ca–Mg/biochar decreased and further resulted in P adsorption tended to be favorable adsorption. Ca–Mg/biochar can highly absorb P with increasing synthesis temperature even at low concentration level (Tseng and Wu, 2008). The \(K_F \) value of Ca–Mg/biochar increased, which indicated that P adsorption capacity increased (Oztürk and Bektaş, 2004). The maximum P adsorption amounts of Ca–Mg/B300, Ca–Mg/B450, and Ca–Mg/B600, obtained from the Langmuir adsorption isothermal model were up to 294.22, 315.33, and 326.63 mg/g, respectively. The results were consistent with the results of previous research (Hale et al., 2013; Yao et al., 2011a). Moreover, the increase in \(K_F \) value further demonstrated that the P adsorption ability of Ca–Mg/biochar increased with increasing synthesis temperature. \(K_F \) is also related to adsorption strength. With increasing \(K_L \) value, the adsorption ability of Ca–Mg/biochar for low P concentration solution increased. Considering that the \(R^2 \) values of the three models were quite similar, the P adsorption of Ca–Mg/biochar was considered to be controlled by multiple processes. The results obtained were consistent with the results of previous research (Yao et al., 2013).

Table 3 – P adsorption isotherms parameter of Ca–Mg/biochar.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Freundlich</th>
<th>Langmuir</th>
<th>Langmuir–Freundlich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(K_F)</td>
<td>(1/n)</td>
<td>(R^2)</td>
</tr>
<tr>
<td>Ca–Mg/B300</td>
<td>0.9129</td>
<td>0.6843</td>
<td>0.9985</td>
</tr>
<tr>
<td>Ca–Mg/B450</td>
<td>1.0214</td>
<td>0.6818</td>
<td>0.9970</td>
</tr>
<tr>
<td>Ca–Mg/B600</td>
<td>1.1483</td>
<td>0.6729</td>
<td>0.9977</td>
</tr>
</tbody>
</table>

Note: \(k_F \) represents reaction rate constant of Freundlich isotherm model. \(n \) is a parameter relevant to the reaction strength between adsorbed molecules and adsorbent surface. \(R^2 \) represents relevant coefficient. \(k_L \) represents reaction rate constant of Langmuir isotherm model. \(Q_m \) denotes monolayer adsorption capacity. \(K \) represents reaction rate constant of Langmuir–Freundlich isotherm model.
2.2.3. Thermodynamic calculation

The P adsorption thermodynamic calculation for Ca–Mg/biochar at 288, 303, and 318 K was analyzed. The Freundlich model was used to calculate the differential enthalpy of adsorption (ΔH), adsorption free energy (ΔG), and adsorption entropy (ΔS). The P adsorption of Ca–Mg/biochar was endothermic, spontaneous, and showed an increase in disorder of the solid–liquid interface.

Adsorption enthalpy is closely related to adsorption amount. When the adsorption amount is initialized at one value, the corresponding adsorption enthalpy is called the differential enthalpy of adsorption. The calculation formula can be expressed as follows:

$$
\ln \left(\frac{1}{C} \right) = \ln K' - \frac{\Delta H}{RT}
$$

where, R (8.314 J/(mol·K)) represents the ideal gas constant, T (K) represents the thermodynamic temperature, and K' represents a constant.

Adsorption free energy (ΔG) can be calculated through the Gibbs equation, which can be expressed as follows:

$$
\Delta G = -nRT
$$

where, x represents the mole fraction of solute in the solution, and q' (mmol/g) represents the adsorption amount of adsorbent. Given that ΔG is irrelevant to q', the formula can be expressed as follows:

$$
\Delta G = -nRT
$$

Adsorption entropy (ΔS) can be calculated by ΔH and ΔG. The formula can be expressed as follows:

$$
\Delta S = \frac{\Delta H - \Delta G}{T}
$$

ΔS depends on the effect of desorption and adsorption. Therefore, the decrease in value means the ΔS decrease of adsorption became much more powerful than the ΔS increase of desorption at a higher reaction temperature. Yoon et al. (2014) and Tu and You (2014) found similar results during P adsorption on magnetic iron oxide nanoparticles and green synthesized nano-bimetal ferrites, respectively.

2.3. P recovery selectivity of Ca–Mg/biochar

2.3.1. pH influence

The resistant ability of the solution pH is an important indicator to evaluate P recovery selectivity of Ca–Mg/biochar. As shown in Fig. 4 the pH resistant ability of Ca–Mg/B600 for P adsorption was not influenced by solution pH. While, for Ca–Mg/B450 and Ca–Mg/B300, owing to the presence of nano-CaO and nano-MgO particles, the optimal solution pH range for P selectivity adsorption was 8 to 9, which was close to the pH range of raw biogas fermentation liquid. Therefore, the P adsorption selectivity of Ca–Mg/biochar cannot be significantly influenced by the typical pH value of biogas fermentation liquid.

Considering the ionization constants of phosphoric acid ($pK_a1 = 2.15$, $pK_a2 = 7.20$, $pK_a3 = 12.33$), P was present in different superior forms depending on pH. When pH

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temperature (K)</th>
<th>ΔH (kJ/mol)</th>
<th>ΔS (J/(mol·K))</th>
<th>ΔG (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca–Mg/B300</td>
<td>288</td>
<td>1.452</td>
<td>10.481</td>
<td>-1.662</td>
</tr>
<tr>
<td></td>
<td>303</td>
<td>1.611</td>
<td>10.461</td>
<td>-1.724</td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>1.611</td>
<td>10.387</td>
<td>-1.747</td>
</tr>
<tr>
<td>Ca–Mg/B450</td>
<td>288</td>
<td>1.319</td>
<td>10.814</td>
<td>-1.656</td>
</tr>
<tr>
<td></td>
<td>303</td>
<td>1.334</td>
<td>10.334</td>
<td>-1.718</td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>1.353</td>
<td>9.859</td>
<td>-1.733</td>
</tr>
<tr>
<td>Ca–Mg/B600</td>
<td>288</td>
<td>1.228</td>
<td>10.147</td>
<td>-1.611</td>
</tr>
<tr>
<td></td>
<td>303</td>
<td>1.247</td>
<td>9.727</td>
<td>-1.695</td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>1.247</td>
<td>9.368</td>
<td>-1.751</td>
</tr>
</tbody>
</table>
increased from 4 to 7, H₂PO₄⁻ was the superior form in the solution, while HPO₄²⁻ was the superior form in the solution when pH increased from 7 to 10. The H₃PO₄ form was unfavorable for the reaction of CaO and MgO with P. The nanoparticles of CaO and MgO could capture the HPO₄²⁻ form with ease (Chen et al., 2007).

The adsorption effect of Ca–Mg/B300 mainly relied on the nanoparticles of CaO and MgO, and the resistant ability of the solution pH was weak. When pH changed from 4 to 5, the presence of CaO and MgO nanoparticles in biochar did not react with P efficiency. The impact of physical adsorption was weak, and P adsorption ability was relatively low. When pH increased from 6 to 9, the nanoparticles of CaO and MgO enhanced P adsorption effect (Wajima and Rakovan, 2013) and reached the maximum amount at pH 9.0. When pH reached 10, OH⁻ in solution could compete with P (Yao et al., 2011b) and react with the nanoparticles of CaO and MgO.

The adsorption effect of Ca–Mg/B450 relied on the chemical reaction of CaO and MgO nanoparticles and the physical adsorption of mesopore structure. The resistant ability of the solution pH of Ca–Mg/B450 was better than that of Ca–Mg/B300. When pH increased from 4 to 5, Ca–Mg/B450 mainly relied on physical adsorption. Chemical adsorption gradually increased with increasing pH and achieved the maximum amount at pH 9. Therefore, adsorption selectivity could be enhanced by the CaO and MgO nanoparticles. When pH reached 10, P adsorption amount slightly decreased because of the competition with OH⁻.

The adsorption effect of Ca–Mg/B600 mainly relied on a stronger physical adsorption and the reaction of CaO and MgO nanoparticles. The solution pH did not have an obvious influence on the physical adsorption effect of Ca–Mg/B600. The resistant ability of the solution pH of Ca–Mg/B600 was better than that of Ca–Mg/B300 and Ca–Mg/B450.

2.3.2. Influence of coexisting ions

Coexisting ions are an important factors for P adsorption. Fig. 5 illustrates the P adsorption selectivity of Ca–Mg/biochar in biogas fermentation liquid and P synthesis solution. The P adsorption amount in P synthesis solution was better than that in biogas fermentation liquid, indicating that coexisting ions in a biogas fermentation liquid, such as NO₃⁻ and Cl⁻, can decrease the P adsorption amount of Ca–Mg/biochar because of competition or blocking effect (Yao et al., 2013). The decrease amounts of Ca–Mg/B300, Ca–Mg/B450, and Ca–Mg/B600 were 2.3%, 1.8%, and 1.0%, respectively. Single coexisting ions, such as Cl⁻ (0.01 mol/L), NO₃⁻ (0.01 mol/L), and HCO₃⁻ (0.01 mol/L), could decrease 4.3%, 11.7%, and 41.4% of P removal ratio by biochar adsorption, respectively (Yao et al., 2011b). The mixture of competing compounds could reduce about 60% of P adsorbed amount for biochar adsorption (Yao et al., 2013). The results obtained in the present study were better than the results of Yao et al. (2011b, 2013), and demonstrated that the chemical action of MgO and CaO nanoparticles could reduce the negative interaction effects of coexisting ions and enhance P adsorption selectivity. Huang et al. (2014) found that cation loaded materials, such as La(OH)₃-modified exfoliated vermiculites, can decrease the negative effects of coexisting ions on P adsorption. The results were similar to the results of the present study. Furthermore, with increasing synthesis temperature of Ca–Mg/biochar, the influence of coexisting ions on P adsorption selectivity decreased. Considering that the physical action of Ca–Mg/biochar adsorption increased with increasing synthesis temperature, the physical action of mesoporous structure could also enhance the resistant of Ca–Mg/biochar to the influence of coexisting ions.

2.4. P available of post sorption Ca–Mg/biochar

Continuous extraction and interval extraction experiments were performed to investigate the P available characterization of post sorption Ca–Mg/biochar. The continuous extraction experiment (Fig. 6) shows that the P release rate of post sorption Ca–Mg/biochar was slow. The release rate in DI was slower than that in citric acid DI. According to the adsorption or desorption mechanisms, the stronger the ability of adsorption, the weaker the ability of desorption (Yao et al., 2013). Although Ca–Mg/biochar strongly adsorbed P in an alkalescent solution, the post sorption Ca–Mg/biochar could desorb P quite well in an acid solution. Therefore, the post sorption Ca–Mg/biochar is more suitable as fertilizer for an acid environment. Pseudo second-order kinetic equation was used to describe the P release process of post sorption Ca–Mg/biochar. The formula is expressed as follows:

\[
\frac{t}{C_t} = \frac{1}{k_{ds}C_e^2} + \frac{t}{C_e}
\]

where, \(C_t\) (mg/L) represents the P concentration at t, \(C_e\) (mg/L) represents the P concentration at desorption equilibrium, and \(k_{ds}\) (L/(mg.hr)) represents the kinetic constant of second-order equation. The P releasing process of post sorption Ca–Mg/biochar was confirmed by the pseudo second-order kinetic equation with \(R^2 > 0.98\). The releasing amounts of post sorption Ca–Mg/biochar in two extraction liquids were in the order of Ca–Mg/B600 > Ca–Mg/B450 > Ca–Mg/B300, a sequence that could be attributed to the total P adsorbed amounts, which were Ca–Mg/B600 > Ca–Mg/B450 > Ca–Mg/B300. In addition, the presence of impregnated CaO and MgO nanoparticles in Ca–Mg/B300, Ca–

Fig. 5 – Coexisting ion influence on P adsorption selectivity of Ca–Mg/biochar. (Qₑ represents the P adsorbed amount at adsorption equilibrium)
Mg/B450, and Ca–Mg/B600 did not have obviously different effects on P release.

Given the intense interaction between Ca, Mg and P, only a small amount of P was released when the extraction liquid reached equilibrium. However, results of the interval extraction experiment (Fig. 7) showed that P can be persistently released from postsorption Ca–Mg/biochar with an interval replacement of fresh extraction liquid. Ca–Mg/B300, Ca–Mg/B450, and Ca–Mg/B600 could release 1.43%, 1.58%, and 1.66% of total adsorbed P per interval time in DI, and 1.53%, 1.68%, 1.77% of total adsorbed P per interval time in citric acid DI. The postsorption Ca–Mg/biochar could persistently release P, and the released P could be used as a slow-release fertilizer. Huang et al. (2014) used La(OH)3-modified exfoliated vermiculites to achieve high P adsorption capacity, but the P desorption clearly decreased per interval time. Pitakteeratham et al. (2013) desorbed P from zirconium sulfate-surfactant micelle, but did not obtain regular and stable desorption. The findings of the present study demonstrated that the P available character of postsorption Ca–Mg/biochar is better than that of other cation modified functional materials. The real application of postsorption Ca–Mg/biochar in soil for plant growth will be performed in further research.

3. Conclusions

The synthesized Ca–Mg/biochar was rich in the organic functional groups of hydroxyl, carboxyl, carbonyl, and methoxyl, as well as the nanoparticles of CaO and MgO. With increasing synthesis temperature, the yield decreased, BET surface area increased, C content increased, H content decreased, and N content remained basically the same. The P adsorption of Ca–Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached adsorption equilibrium after 360 min. It was endothermic, spontaneous, and showed an increase in disorder of the solid–liquid interface. Furthermore, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63 mg/g. The P adsorption selectivity of Ca–Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles could reduce the negative interaction effects of coexisting ions in biogas fermentation liquid. The P releasing amounts of postsorption Ca–Mg/biochar were in the order of Ca–Mg/B600 > Ca–Mg/B450 > Ca–Mg/B300. The postsorption Ca–Mg/biochar could persistently release P and is more suitable for an acid environment.

Acknowledgments

The authors are indebted to Prof. Paul Westerhoff in Arizona State University for his insightful comments and suggestions that significantly improved the manuscript. The work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120008120013), the National Natural Science Foundation of China (No. 31401944), the Beijing Natural Science Foundation (No. 6144026), the China Scholarship Council (No. 201206355006), and the Chinese Universities Scientific Fund of China Agricultural University (No. 2011J1S169). The Analytical Instrumentation Center of Peking University is also being thanked.

REFERENCES

Editorial Board of Journal of Environmental Sciences

Editor-in-Chief
X. Chris Le
University of Alberta, Canada

Associate Editors-in-Chief
- **Jiuhui Qu**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Shu Tao**
 Peking University, China
- **Nigel Bell**
 Imperial College London, UK
- **Po-Keung Wong**
 The Chinese University of Hong Kong, Hong Kong, China

Editorial Board

Aquatic environment
- **Baoyu Gao**
 Shandong University, China
- **Maohong Fan**
 University of Wyoming, USA
- **Chihpin Huang**
 National Chiao Tung University, Taiwan, China
- **Ng Wun Jern**
 Nanyang Environment & Water Research Institute, Singapore
- **Clark C. K. Liu**
 University of Hawaii at Manoa, USA
- **Daqiang Yin**
 Tongji University, China

Atmospheric environment
- **Jiannin Chen**
 Fudan University, China
- **Abdelwahid Mellouki**
 Centre National de la Recherche Scientifique, France
- **Yujing Mu**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Zeng Li**
 Tongji University, China

Terrestrial environment
- **Christopher Anderson**
 Massey University, New Zealand
- **Zaizong Cai**
 Nanjing Normal University, China
- **Xinbin Feng**
 Institute of Geochemistry, Chinese Academy of Sciences, China
- **Jianmin Chen**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Min Shao**
 Peking University, China
- **Yong Cai**
 Florida International University, USA

Environmental catalysis and materials
- **Zhifeng Yang**
 Beijing Normal University, China
- **Hong He**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Min Shao**
 Peking University, China
- **Jae-Seong Lee**
 Sungkyunkwan University, South Korea
- **Bojan Sedmak**
 University of Ljubljana, Slovenia
- **Zongwei Cai**
 Hong Kong Baptist University, Hong Kong, China

Environmental analysis and method
- **Zhiwu Wang**
 The Ohio State University, USA
- **Jingwen Chen**
 Dalian University of Technology, China
- **Huiqin Jiang**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Junhua Li**
 Tsinghua University, China

Environmental biology
- **James Jay Schauer**
 University of Wisconsin-Madison, USA
- **Junhua Li**
 Tsinghua University, China
- **Jae-Seong Lee**
 Sungkyunkwan University, South Korea
- **Christopher Rensing**
 University of Copenhagen, Denmark
- **Zongwei Cai**
 Hong Kong Baptist University, Hong Kong, China
- **Lirong Song**
 Institute of Hydrobiology, Chinese Academy of Sciences, China
- **Chunxia Wang**
 National Natural Science Foundation of China
- **Minghui Zheng**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Municipal solid waste and green chemistry
- **Gehong Wei**
 Northwest A & F University, China
- **Wenfeng Shangguan**
 Shanghai Jiao Tong University, China
- **Zhongtang Yu**
 The Ohio State University, USA
- **Yuesi Wang**
 Institute of Hydrobiology, Chinese Academy of Sciences, China
- **Xin Yang**
 University of Cambridge, UK
- **Bojan Sedmak**
 University of Ljubljana, Slovenia
- **Zhengang Mao**
 Tongji University, China
- **Chunxia Wang**
 National Natural Science Foundation of China

Editorial office staff
- **Managing editor**
 Qingcai Feng
- **Editors**
 Zixuan Wang, Suqin Liu, Kuo Liu, Zhengang Mao
- **English editor**
 Catherine Rice (USA)

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition
Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition
China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).
Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration
Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial
Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.