Highlight articles

129 Rice: Reducing arsenic content by controlling water irrigation
Ashley M. Newbigging, Rebecca E. Paliwoda and X. Chris Le

132 Apportioning aldehydes: Quantifying industrial sources of carbonyls
Sarah A. Styler

Review articles

30 Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013)
Dong-Qing Zhang, K.B.S.N. Jinadasa, Richard M. Gersberg, Yu Liu, Soon Keat Tan and Wun Jern Ng

47 Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland
Alicja Kolasa-Wiecek

113 Mini-review on river eutrophication and bottom improvement techniques, with special emphasis on the Nakdong River
Andinet Tekile, Ilho Kim and Jisung Kim

Regular articles

1 Effects of temperature and composite alumina on pyrolysis of sewage sludge
Yu Sun, Baosheng Jin, Wei Wu, Wu Zuo, Ya Zhang, Yong Zhang and Yaji Huang

9 Numerical study of the effects of local atmospheric circulations on a pollution event over Beijing-Tianjin-Hebei, China
Yucong Miao, Shuhua Liu, Yijia Zheng, Shu Wang and Bicheng Chen, Hui Zheng and Jingchuan Zhao

21 Removal kinetics of phosphorus from synthetic wastewater using basic oxygen furnace slag
Chong Han, Zhen Wang, He Yang and Xiangxin Xue

55 Abatement of SO₂-NOx binary gas mixtures using a ferruginous active absorbent: Part I. Synergistic effects and mechanism
Yinghui Han, Xiaolei Li, Maohong Fan, Armistead G. Russell, Yi Zhao, Chunmei Cao, Ning Zhang and Genshan Jiang

65 Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon
Gang Wang, Baojuan Dou, Zhongshen Zhang, Junhui Wang, Haier Liu and Zhengping Hao

74 Flux characteristics of total dissolved iron and its species during extreme rainfall event in the midstream of the Heilongjiang River
Jiunian Guan, Baixing Yan, Hui Zhu, Lixia Wang, Duian Lu and Long Cheng

81 Sodium fluoride induces apoptosis through reactive oxygen species-mediated endoplasmic reticulum stress pathway in Sertoli cells
Yang Yang, Xinwei Lin, Hui Huang, Demin Feng, Yue Ba, Xuemin Cheng and Liuxin Cui

90 Roles of SO₂ oxidation in new particle formation events
He Meng, Yujiao Zhu, Greg J. Evans, Cheol-Heon Jeong and Xiaohong Yao

102 Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia)
Meryem Jemli, Fatma Karray, Firas Feki, Slim Loukil, Najla Mhiri, Fathi Aloui and Sami Sayadi
122 Bioreduction of vanadium (V) in groundwater by autotrophic bacteria: Mechanisms and microorganisms
Xiaoyin Xu, Siquing Xia, Lijie Zhou, Zhiqiang Zhang and Bruce E. Rittmann

135 Laccase-catalyzed bisphenol A oxidation in the presence of 10-propyl sulfonic acid phenoxazine
Ruša Ivanec-Goranina, Juozas Kulyš, Irina Bachmatova, Liucija Marcinkuvičienė and Rolandas Meškys

140 Spatial heterogeneity of lake eutrophication caused by physiogeographic conditions: An analysis of 143 lakes in China
Jingtao Ding, Jinling Cao, Qigong Xu, Beidou Xi, Jing Su, Rutai Gao, Shouliang Huo and Hongliang Liu

148 Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO₃
Chun-Hua Li, Yuk-Shan Wong, Hong-Yuan Wang and Nora Fung-Yee Tam

157 Achieving nitritation at low temperatures using free ammonia inhibition on Nitrobacter and real-time control in an SBR treating landfill leachate
Hongwei Sun, Yongzhen Peng, Shuying Wang and Juan Ma

164 Kinetics of Solvent Blue and Reactive Yellow removal using microwave radiation in combination with nanoscale zero-valent iron
Yanpeng Mao, Zhenqian Xi, Wenlong Wang, Chunyuan Ma and Qinyan Yue

173 Environmental impacts of a large-scale incinerator with mixed MSW of high water content from a LCA perspective
Ziyang Lou, Bernd Billetewski, Nanwen Zhu, Xiaoli Chai, Bing Li and Youcai Zhao

180 Quantitative structure–biodegradability relationships for biokinetic parameter of polycyclic aromatic hydrocarbons
Peng Xu, Wencheng Ma, Hongjun Han, Shengyong Jia and Baolin Hou

191 Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants
Christof Lanzerstorfer

198 Assessment of the sources and transformations of nitrogen in a plain river network region using a stable isotope approach
Jingtao Ding, Beidou Xi, Qigong Xu, Jing Su, Shouliang Huo, Hongliang Liu, Yijun Yu and Yanbo Zhang

207 The performance of a combined nitritation-anammox reactor treating anaerobic digestion supernatant under various C/N ratios
Jian Zhao, Jiane Zuo, Jia Lin and Peng Li

215 Coagulation behavior and floc properties of compound bioflocculant-polyaluminum chloride dual-coagulants and polymeric aluminum in low temperature surface water treatment
Xin Huang, Shenglei Sun, Baoyu Gao, Qinyan Yue, Yan Wang and Qian Li

223 Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure
Yang Zhang, Lin Zhu, Ya Zhou and Jimiao Chen

231 Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil
Mohammad Anwar Hossain, Golum Kibria Muhammad Mustafizur Rahman, Mohammad Mizanur Rahman, Abul Hossain Molla, Mohammad Mostafizur Rahman and Mohammad Khabir Uddin

241 Molecular characterization of microbial communities in bioaerosols of a coal mine by 454 pyrosequencing and real-time PCR
Min Wei, Zhisheng Yu and Hongxun Zhang

252 Risk assessment of Giardia from a full scale MBR sewage treatment plant caused by membrane integrity failure
Yu Zhang, Zhimin Chen, Wei An, Shumin Xiao, Hongying Yuan, Dongqing Zhang and Min Yang

186 Serious BTEX pollution in rural area of the North China Plain during winter season
Kankan Liu, Chenglong Zhang, Ye Cheng, Chengtang Liu, Hongxing Zhang, Gen Zhang, Xu Sun and Yujing Mu
Rice: Reducing arsenic content by controlling water irrigation

Ashley M. Newbigging¹, Rebecca E. Paliwoda¹, X. Chris Le¹,*

University of Alberta, Edmonton, Alberta, Canada

Available online 17 March 2015

Keywords:
Arsenic
Cadmium
Rice
Food
Water irrigation
Metal contamination

Arsenic has long been recognized as a poison. Arsenic in water supplies that are used for both drinking and crop irrigation can expose many people chronically to elevated levels of arsenic.

The main health concern for chronic exposure to arsenic is the development of cancer. Although the World Health Organization (WHO) recommends that total arsenic in drinking water should be under 10 μg/L (or 10 ppb), (WHO, 2011), some regions around the world have water arsenic concentrations as much as a thousand times higher than the WHO guideline value (NRC, National Research Council, 1999; Nordstrom, 2002).

Another significant source of arsenic is rice. Arsenic tends to concentrate in rice at higher levels than other crops, such as wheat (Schoof et al., 1993; Williams et al., 2007). There have been many studies focusing on rice physiology and arsenic uptake (Meharg and Hartley-Whitaker, 2002; Ma et al., 2008; Zhu et al., 2008; Rahman and Hasegawa, 2011; Zhang et al., 2008; Rahman et al., 2011; Pan et al., 2014; Zhang et al., 2011; Schmidt, 2015).

Addressing the many concerns on arsenic in rice, a recent paper by Hu et al. (2015) is an effort towards controlling arsenic contamination in rice cultivation. They investigated which crop-watering regimen (minimal water, intermediate amounts of water, or flooding) resulted in the lowest arsenic concentrations in brown rice. Using Brazilian upland rice grown on arsenic and cadmium contaminated soils, they compared arsenic and cadmium in pot-grown rice and field-grown rice. Because rice cultivation requires copious amounts of water, naturally it depletes reservoirs that can be used otherwise as drinking water. Since Brazilian upland rice is bred to thrive in minimal watering conditions (Cheng et al., 2000), less water is needed, which saves both resources and time.

Hu et al. (2015) showed that arsenic concentrations and speciation both varied with each water irrigation regimen. With increasing amounts of water used to irrigate the rice crops, an increased level of total arsenic was detected in the rice. Flooding of rice crops yielded the highest total arsenic...
concentration in the rice grain. Rice grown using the minimal amount of water showed the least concentration of arsenic. This is consistent with other studies (Xu et al., 2008; Pan et al., 2014); however, rice grown with minimal water is not always successful in producing good plant yields, and growing Brazilian upland rice may not always be easy.

Arsenic speciation patterns also varied with each water irrigation regimen. Speciation is necessary because different arsenic species have different toxicities and can be found in varying concentrations in food and water. Inorganic arsenic is several orders of magnitude more toxic than organic arsenic when the inorganic and organic arsenic species of the same oxidation state are compared (Charoensuk et al., 2009; Shen et al., 2013). Hu et al. (2015) detected three arsenic species in rice: inorganic arsenate (As(V)), inorganic arsenite (As(III)), and DMA. In rice grown aerobically (with minimal water), 88% was inorganic arsenic and 11% DMA. Interestingly, while rice grown under flooding conditions had the highest total arsenic concentration, a smaller fraction (38%) was present as inorganic arsenic and the rest (62%) was in the form of DMA. Since DMA generally has lower toxicity than inorganic arsenic, the predominant arsenic species in rice as DMA may seem to be less of a concern. However, precautions should still be taken to reduce its presence in rice because the reduced trivalent form of this dimethylarsenical is highly toxic (Styblo et al., 2000).

In addition to arsenic, crops can also take up cadmium. Cadmium is highly toxic and can lead to many chronic toxicity diseases, including increased risk of atherosclerosis and hypertension, both leading to heart disease (Revis et al., 1981). Hu et al. (2015) demonstrated that the lowest cadmium concentrations were found in rice grown by flooding. This pattern differs from total arsenic, which showed the highest levels of total arsenic in rice grown by flooding. These opposing trends suggest that care must be taken when choosing irrigation regimes to minimize the uptake of arsenic and cadmium in rice grains if the soil is polluted with both elements. In this regard, the use of phosphate fertilizers is cautioned, as some phosphate fertilizers have high concentrations of cadmium and repeated applications of phosphate fertilizers could result in significant increases in soil cadmium (Mulla et al., 1980).

Since controlling the arsenic intake from rice is difficult with many complications, minimizing the arsenic content in rice is the next best option. Hu et al. (2015) have shown that growing rice in an environment with minimal water irrigation results in the least amount of total arsenic in rice. Further research on understanding the mobility of arsenic in water and soil, plant uptake and translocation into the rice grain, and transformation of arsenic through abiotic (reduction–oxidation) or biotic (methylation) processes can contribute to achieving the goal of minimizing arsenic levels in rice. Rice cultivation is also an important aspect of controlling arsenic in rice. This can include irrigation management, utilizing different species of rice, or potentially genetically modifying the rice (Jia et al., 2012). By incorporating an arsenic methyltransferase enzyme from algae (Qin et al., 2009), scientists hope to achieve arsenic volatilization out of the rice crop, resulting in less arsenic present in the plants (Meng et al., 2001; Jia et al., 2012). Overall, continued research in these areas contributes to the effort of reducing arsenic in rice, and can greatly help to reduce overall arsenic intake in regions prone to arsenic problems.

Photo by Dr. Baodong Chen, Research Center for Eco-Environmental Science, Chinese Academy of Sciences.

REFERENCES

Editorial Board of Journal of Environmental Sciences

Editor-in-Chief
X. Chris Le
University of Alberta, Canada

Associate Editors-in-Chief
Jihui Qu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Shu Tao
Peking University, China
Nigel Bell
Imperial College London, UK
Po-Keung Wong
The Chinese University of Hong Kong, Hong Kong, China

Editorial Board

Aquatic environment

Baoyu Gao
Shandong University, China
Maosheng Fan
University of Wyoming, USA
Chhipin Huang
National Chiao Tung University
Taiwan, China
Ng Wun Jern
Nanyang Environment & Water Research Institute, Singapore
Clark C. K. Liu
University of Hawaii at Manoa, USA
Hokyong Shon
University of Technology, Sydney, Australia
Zijian Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Zhiliu Wang
The Ohio State University, USA
Yuxiang Wang
Queen’s University, Canada
Min Yang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Terrestrial environment

Christopher Anderson
Massey University, New Zealand
Zaocong Cai
Nanjing Normal University, China
Xinbin Feng
Institute of Geochemistry, Chinese Academy of Sciences, China
Hong-qing Hu
Huazhong Agricultural University, China
Kia-ke Lam
The Chinese University of Hong Kong
Hong Kong, China
Erwin Klump
Research Centre Juelich, Agrosphere Institute
Germany

Environmental toxicology and health

Jingwen Chen
Dalian University of Technology, China
Jianying Hu
Peking University, China
Guibin Jiang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Environmental catalysis and materials

Tsuyoshi Nakanishi
Gifu Pharmaceutical University, Japan

Environmental analysis and method

Zongwei Cai
Hong Kong Baptist University,
Hong Kong, China

Municipal solid waste and green chemistry

Pingjie He
Tongji University, China

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.