ISSN 1001-0742 CN 11-2629/X

JOURNAL OF

JOURNAL OF ENVIRONMENTAL SCIENCES

April 1, 2015 Volume 30 www.jesc.ac.cn

MBR in Wastewater Reclamation

Sponsored by Research Center for Eco-Environmental Sciences Chinese Academy of Sciences

www.jesc.ac.cn

Highlight articles

- 129 Rice: Reducing arsenic content by controlling water irrigation Ashley M. Newbigging, Rebecca E. Paliwoda and X. Chris Le
- 132 Apportioning aldehydes: Quantifying industrial sources of carbonyls Sarah A. Styler

Review articles

- 30 Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013)
 - Dong-Qing Zhang, K.B.S.N. Jinadasa, Richard M. Gersberg, Yu Liu, Soon Keat Tan and Wun Jern Ng
- 47 Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland Alicja Kolasa-Wiecek
- 113 Mini-review on river eutrophication and bottom improvement techniques, with special emphasis on the Nakdong River Andinet Tekile, Ilho Kim and Jisung Kim

Regular articles

- 1 Effects of temperature and composite alumina on pyrolysis of sewage sludge Yu Sun, Baosheng Jin, Wei Wu, Wu Zuo, Ya Zhang, Yong Zhang and Yaji Huang
- Numerical study of the effects of local atmospheric circulations on a pollution event over
 Beijing-Tianjin-Hebei, China
 Yucong Miao, Shuhua Liu, Yijia Zheng, Shu Wang and Bicheng Chen, Hui Zheng and Jingchuan Zhao
- 21 Removal kinetics of phosphorus from synthetic wastewater using basic oxygen furnace slag Chong Han, Zhen Wang, He Yang and Xiangxin Xue
- 55 Abatement of SO₂-NOx binary gas mixtures using a ferruginous active absorbent: Part I. Synergistic effects and mechanism Yinghui Han, Xiaolei Li, Maohong Fan, Armistead G. Russell, Yi Zhao, Chunmei Cao, Ning Zhang and Genshan Jiang
- 65 Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon Gang Wang, Baojuan Dou, Zhongshen Zhang, Junhui Wang, Haier Liu and Zhengping Hao
- 74 Flux characteristics of total dissolved iron and its species during extreme rainfall event in the midstream of the Heilongjiang River Jiunian Guan, Baixing Yan, Hui Zhu, Lixia Wang, Duian Lu and Long Cheng
- 81 Sodium fluoride induces apoptosis through reactive oxygen species-mediated endoplasmic reticulum stress pathway in Sertoli cells Yang Yang, Xinwei Lin, Hui Huang, Demin Feng, Yue Ba, Xuemin Cheng and Liuxin Cui
- Roles of SO₂ oxidation in new particle formation events
 He Meng, Yujiao Zhu, Greg J. Evans, Cheol-Heon Jeong and Xiaohong Yao
- 102 Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia) Meryem Jemli, Fatma Karray, Firas Feki, Slim Loukil, Najla Mhiri, Fathi Aloui and Sami Sayadi

CONTENTS

122 Bioreduction of vanadium (V) in groundwater by autohydrogentrophic bacteria: Mechanisms and microorganisms

Xiaoyin Xu, Siqing Xia, Lijie Zhou, Zhiqiang Zhang and Bruce E. Rittmann

- 135 Laccase-catalyzed bisphenol A oxidation in the presence of 10-propyl sulfonic acid phenoxazine Rūta Ivanec-Goranina, Juozas Kulys, Irina Bachmatova, Liucija Marcinkevičienė and Rolandas Meškys
- 140 Spatial heterogeneity of lake eutrophication caused by physiogeographic conditions: An analysis of 143 lakes in China Jingtao Ding, Jinling Cao, Qigong Xu, Beidou Xi, Jing Su, Rutai Gao, Shouliang Huo and Hongliang Liu
- 148 Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO₃ Chun-Hua Li, Yuk-Shan Wong, Hong-Yuan Wang and Nora Fung-Yee Tam
- 157 Achieving nitritation at low temperatures using free ammonia inhibition on *Nitrobacter* and real-time control in an SBR treating landfill leachate Hongwei Sun, Yongzhen Peng, Shuying Wang and Juan Ma
- 164 Kinetics of Solvent Blue and Reactive Yellow removal using microwave radiation in combination with nanoscale zero-valent iron Yanpeng Mao, Zhenqian Xi, Wenlong Wang, Chunyuan Ma and Qinyan Yue
- 173 Environmental impacts of a large-scale incinerator with mixed MSW of high water content from a LCA perspective Ziyang Lou, Bernd Bilitewski, Nanwen Zhu, Xiaoli Chai, Bing Li and Youcai Zhao
- 180 Quantitative structure-biodegradability relationships for biokinetic parameter of polycyclic aromatic hydrocarbons Peng Xu, Wencheng Ma, Hongjun Han, Shengyong Jia and Baolin Hou
- 191 Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants Christof Lanzerstorfer
- 198 Assessment of the sources and transformations of nitrogen in a plain river network region using a stable isotope approach Jingtao Ding, Beidou Xi, Qigong Xu, Jing Su, Shouliang Huo, Hongliang Liu, Yijun Yu and Yanbo Zhang
- 207 The performance of a combined nitritation-anammox reactor treating anaerobic digestion supernatant under various C/N ratios Jian Zhao, Jiane Zuo, Jia Lin and Peng Li
- 215 Coagulation behavior and floc properties of compound bioflocculant-polyaluminum chloride dualcoagulants and polymeric aluminum in low temperature surface water treatment Xin Huang, Shenglei Sun, Baoyu Gao, Qinyan Yue, Yan Wang and Qian Li
- 223 Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure Yang Zhang, Lin Zhu, Ya Zhou and Jimiao Chen
- 231 Impact of industrial effluent on growth and yield of rice (*Oryza sativa L*.) in silty clay loam soil Mohammad Anwar Hossain, Golum Kibria Muhammad Mustafizur Rahman, Mohammad Mizanur Rahman, Abul Hossain Molla, Mohammad Mostafizur Rahman and Mohammad Khabir Uddin
- 241 Molecular characterization of microbial communities in bioaerosols of a coal mine by 454 pyrosequencing and real-time PCR Min Wei, Zhisheng Yu and Hongxun Zhang
- Risk assessment of Giardia from a full scale MBR sewage treatment plant caused by membrane integrity failure
 Yu Zhang, Zhimin Chen, Wei An, Shumin Xiao, Hongying Yuan, Dongqing Zhang and Min Yang
- 186 Serious BTEX pollution in rural area of the North China Plain during winter season Kankan Liu, Chenglong Zhang, Ye Cheng, Chengtang Liu, Hongxing Zhang, Gen Zhang, Xu Sun and Yujing Mu

Apportioning aldehydes: Quantifying industrial sources of carbonyls

Sarah A. Styler

Leibniz Institute for Tropospheric Research, Leipzig, Germany. E-mail: styler@tropos.de.

Photo by Ming Wang, State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, China.

ARTICLE INFO

Available online 17 March 2015

Keywords: Carbonyl compounds Source apportionment Industrial emissions

In their recent Journal of Environmental Sciences publication, Wang and colleagues provide field evidence that industrial activities can contribute substantially to atmospheric carbonyl concentrations (Wang et al., 2015). These results may help to explain underestimations of carbonyl emissions in currently available emission inventories, and highlight the need for an improved understanding of industrial sources of this class of compounds.

In the atmosphere, carbonyl compounds photolyze to yield reactive radicals, and thus contribute to the formation of ozone (Edwards et al., 2014) and other components of photochemical smog, including the NO_x reservoir peroxyacetyl nitrate (Fischer et al., 2014). Carbonyls are formed in the atmosphere as stable intermediates in the photooxidation of alkanes and other precursor species, but can also be emitted directly by a variety of anthropogenic sources, including traffic, coal burning, and industrial activities (Chen et al., 2014). An understanding of the magnitude of these primary sources is important, in part because ozone production from the photolysis of accumulated

http://dx.doi.org/10.1016/j.jes.2015.03.002

1001-0742/@ 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

directly emitted carbonyls—formaldehyde in particular—would be expected to occur earlier in the day than that from carbonyls produced via photochemistry (Parrish et al., 2012).

The quantification of volatile organic compound (VOC) emissions is often accomplished using emission inventories, which sum the products of activity rates (*e.g.* material production) and emission factors (*e.g.* mass emission per production unit) for all known sources of a single compound or compound class (Zhang et al., 2009). Field-derived estimates of carbonyl emissions often differ substantially from those predicted by such inventories, however: in one recent study, for example, aldehyde and ketone emissions estimated from ambient measurements of these species in Beijing were found to be more than twice as high as those reported in current inventories (Wang et al., 2014). These discrepancies highlight major gaps in our understanding of carbonyl sources.

In an effort to address these uncertainties, Wang et al. measured concentrations of 72 VOCs, including aliphatic and aromatic hydrocarbons, carbonyls, and alkyl nitrates, at a rural site located in the Yangtze River Delta, China, near a number of ship manufacturing facilities. They found that VOC concentrations varied substantially over the month-long sampling campaign, with the highest concentrations—a seven-fold enhancement in total VOCs relative to clean conditions—measured during a three-day stagnant period.

This pollution period was characterized by a doubling of the relative contribution of aromatic compounds to the measured VOC profile, and in particular by substantially elevated toluene concentrations. In order to determine the source of these elevated concentrations, Wang et al. first used measured concentrations of 2-butyl nitrate and its parent alkane 2-butane to assess the extent of photochemical processing (i.e. the "photochemical age") of sampled air masses. Then, they used this parameter to derive the ratio of toluene to benzene in fresh air masses (i.e. the emission ratio) from concentrations of these species measured at the sampling site. Since benzene is primarily associated with combustion processes, whereas toluene is also emitted by industrial sources, this ratio can be used to evaluate the relative contributions of these sources to ambient toluene levels. The ratio that they obtained was significantly higher than those associated with combustion sources, which suggests that the elevated toluene concentrations measured during the pollution period were of industrial origin.

Source apportionment of carbonyls is complicated by the fact that they have both primary and secondary sources. However, since carbonyls and alkyl nitrates both arise from peroxy radical (RO₂) precursors, relationships between these two compound classes can be used to assess the relative contribution of secondary (i.e. photochemical) production to measured carbonyl concentrations. Although Wang et al. found a significant correlation between carbonyl–alkyl nitrate pairs under clean conditions, this correlation broke down at elevated toluene concentrations—or, in other words, when air quality at the measurement site was strongly influenced by industrial emissions. These results imply that both industrial and photochemical sources contributed to carbonyl concentrations at the site.

Extracting meaningful quantitative information regarding emissions of secondary species from correlations measured in the field is challenging (Parrish et al., 2012). Nevertheless, in order to obtain a preliminary estimate of the relative contribution of industrial activities to ambient carbonyls at the study site, Wang et al. fit measured carbonyl concentrations using a simple multiple linear regression model, in which toluene and alkyl nitrates were used as respective tracers of industrial and photochemical carbonyl sources. Using the coefficients obtained by the model, the authors estimated that industrial sources contributed ~70% of ambient acetaldehyde, ~50% of ambient acetone, and ~20% of ambient formaldehyde.

These results underscore the valuable role that field measurements can play in identifying sources underrepresented in emission inventories, and highlight the need for an improved understanding of both the magnitude of industrial carbonyl emissions and the specific industrial processes that lead to these emissions. Although not measured here, one carbonyl particularly deserving of further study is benzaldehyde, a highly efficient precursor of secondary organic aerosol (SOA) whose emissions are significantly underestimated in available inventories (Borbon et al., 2013).

Carbonyl photolysis has very recently been shown to be the dominant radical source driving ozone production in the Uintah Basin, a remote oil and gas-producing region in Utah (Edwards et al., 2014). The results obtained in the present study suggest that primary carbonyl emissions from industrial facilities have the potential to contribute to ozone production in nearby rural areas. Further work is needed, however, to clarify the contribution of these direct emissions to regional-scale air quality. Results from a recent study in Houston, Texas suggest that although primary formaldehyde emissions from petrochemical facilities are important on a local scale, regional formaldehyde concentrations are largely determined by secondary production from co-emitted reactive VOCs (Johansson et al., 2014). It is unclear whether these results are applicable to rural sites where air quality is influenced by industrial activities that do not produce large quantities of carbonyl precursors. The performance of source apportionment studies at varying distances from industrial facilities with different VOC emission profiles should help to resolve these uncertainties.

REFERENCES

- Borbon, A., Gilman, J.B., Kuster, W.C., Grand, N., Chevaillier, S., Colomb, A., et al., 2013. Emission ratios of anthropogenic volatile organic compounds in northern mid-latitude megacities: observations versus emission inventories in Los Angeles and Paris. J. Geophys. Res.-Atmos. 118, 2041–2057.
- Chen, W.T., Shao, M., Lu, S.H., Wang, M., Zeng, L.M., Yuan, B., et al., 2014. Understanding primary and secondary sources of ambient carbonyl compounds in Beijing using the PMF model. Atmos. Chem. Phys. 14, 3047–3062.
- Edwards, P.M., Brown, S.S., Roberts, J.M., Ahmadov, R., Banta, R.M., deGouw, J.A., et al., 2014. High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature 514, 351–354.
- Fischer, E.V., Jacob, D.J., Yantosca, R.M., Sulprizio, M.P., Millet, D.B., Mao, J., et al., 2014. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmos. Chem. Phys. 14, 2679–2698.
- Johansson, J.K.E., Mellqvist, J., Samuelsson, J., Offerle, B., Moldanova, J., Rappenglück, B., et al., 2014. Quantitative measurements and modeling of industrial formaldehyde

emissions in the Greater Houston area during campaigns in 2009 and 2011. J. Geophys. Res.-Atmos. 119, 4303–4322.

- Parrish, D.D., Ryerson, T.B., Mellqvist, J., Johansson, J., Fried, A., Richter, D., et al., 2012. Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region. Atmos. Chem. Phys. 12, 3273–3288.
- Wang, M., Shao, M., Chen, W., Yuan, B., Lu, S., Zhang, Q., et al., 2014. A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing. China Atmos. Chem. Phys. 14, 5871–5891.
- Wang, M., Chen, W., Shao, M., Lu, S., Zeng, L., Hu, M., 2015. Investigation of carbonyl compound sources at a rural site in the Yangtze River Delta region of China. J. Environ. Sci. 28, 128–136.
- Zhang, Q., Streets, D.G., Carmichael, G.R., He, K.B., Huo, H., Kannari, A., et al., 2009. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 9, 5131–5153.

Editorial Board of Journal of Environmental Sciences

Editor-in-Chief

X. Chris Le

University of Alberta, Canada

Associate Editors-in-Chief

Jiuhui Qu	Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Shu Tao	Peking University, China
Nigel Bell	Imperial College London, UK
Po-Keung Wong	The Chinese University of Hong Kong, Hong Kong, China

Peijun Li

Editorial Board

Aquatic environment Baoyu Gao Shandong University, China **Maohong Fan** University of Wyoming, USA Chihpin Huang National Chiao Tung University Taiwan, China Ng Wun Jern Nanyang Environment & Water Research Institute, Singapore Clark C. K. Liu University of Hawaii at Manoa, USA **Hokyong Shon** University of Technology, Sydney, Australia Zijian Wang Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Zhiwu Wang The Ohio State University, USA Yuxiang Wang Queen's University, Canada Min Yang Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China **Zhifeng Yang** Beijing Normal University, China Han-Qing Yu University of Science & Technology of China, China **Terrestrial environment Christopher Anderson** Massey University, New Zealand Zucong Cai Nanjing Normal University, China Xinbin Feng Institute of Geochemistry, Chinese Academy of Sciences, China Hongqing Hu Huazhong Agricultural University, China Kin-Che Lam The Chinese University of Hong Kong Hong Kong, China Erwin Klumpp Research Centre Juelich, Agrosphere Institute Germany

Institute of Applied Ecology, Chinese Academy of Sciences, China Michael Schloter German Research Center for Environmental Health Germany Xueiun Wang Peking University, China Lizhong Zhu Zhejiang University, China Atmospheric environment Jianmin Chen Fudan University, China Abdelwahid Mellouki Centre National de la Recherche Scientifique France Yujing Mu Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Min Shao Peking University, China James Jay Schauer University of Wisconsin-Madison, USA Yuesi Wang Institute of Atmospheric Physics, Chinese Academy of Sciences, China Xin Yang University of Cambridge, UK **Environmental biology** Yong Cai Florida International University, USA Henner Hollert RWTH Aachen University, Germany Jae-Seong Lee Sungkyunkwan University, South Korea **Christopher Rensing** University of Copenhagen, Denmark Bojan Sedmak National Institute of Biology, Slovenia Lirong Song Institute of Hydrobiology, Chinese Academy of Sciences, China Chunxia Wang National Natural Science Foundation of China Gehong Wei Northwest A & F University, China

Daqiang Yin Tongji University, China Zhongtang Yu The Ohio State University, USA Environmental toxicology and health Jingwen Chen Dalian University of Technology, China **Jianving Hu** Peking University, China Guibin Jiang Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Siiin Liu Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Tsuyoshi Nakanishi Gifu Pharmaceutical University, Japan Willie Peijnenburg University of Leiden, The Netherlands **Bingsheng Zhou** Institute of Hydrobiology, Chinese Academy of Sciences, China Environmental catalysis and materials Hong He Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Junhua Li Tsinghua University, China Wenfeng Shangguan Shanghai Jiao Tong University, China Ralph T. Yang University of Michigan, USA Environmental analysis and method Zongwei Cai Hong Kong Baptist University, Hong Kong, China Jiping Chen Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China Minghui Zheng Research Center for Eco-Environmental Sciences. Chinese Academy of Sciences, China Municipal solid waste and green chemistry **Pinjing He** Tongji University, China

Editorial office staff

Managing editor	Qingcai Feng			
Editors	Zixuan Wang	Suqin Liu	Kuo Liu	Zhengang Mao
English editor	Catherine Rice ((USA)		

Copyright® Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

JOURNAL OF ENVIRONMENTAL SCIENCES

环境科学学报(英文版)

www.jesc.ac.cn

Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.

Editor-in-chief	X. Chris Le	Printed by	Beijing Beilin Printing House, 100083, China
	E-mail: jesc@rcees.ac.cn		http://www.elsevier.com/locate/jes
	Tel: 86-10-62920553; http://www.jesc.ac.cn	Foreign	Elsevier Limited
	P. O. Box 2871, Beijing 100085, China		Local Post Offices through China
	Environmental Sciences		North Street, Beijing 100717, China
Edited by	Editorial Office of Journal of	Domestic	Science Press, 16 Donghuangchenggen
	Sciences, Chinese Academy of Sciences	Distributed by	
Sponsored by	Research Center for Eco-Environmental		Elsevier Limited, The Netherlands
Supervised by	Chinese Academy of Sciences	Published by	Science Press, Beijing, China

Journal of Environmental Sciences (Established in 1989) Volume 30 2015

CN 11-2629/X Domestic postcode: 2-580

Domestic price per issue RMB ¥ 110.00

