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We investigated the efficiency and kinetics of the degradation of soluble dyes over the pH
range 5.0–9.0 using a method employing microwave radiation in combination with
nanoscale zero-valent iron (MW–nZVI). The nZVI particles (40–70 nm in diameter) were
prepared by a liquid-phase chemical reduction method employing starch as a dispersant.
Compared to the removal of Solvent Blue 36 and Reactive Yellow K-RN using only nZVI,
more rapid and efficient dye removal and total organic carbon removal were achieved using
MW–nZVI. The dye removal efficiency increased significantly with decreasing pH, but was
negligibly affected by variation in the microwave power. The kinetics of dye removal by
MW–nZVI followed both an empirical equation and the pseudo first-order model, while the
kinetics of dye removal using nZVI could only be described by an empirical equation. It was
also concluded that microwave heating of the dye solutions as well as acceleration of
corrosion of nZVI and consumption of Fe(II) were possible reasons behind the enhanced dye
degradation.
© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

Textile dyeing and processing is one of the pillar industries of China,
especially the Shandong Province, which is located on the eastern
line of the South-to-North Water Transfer Project of China. There-
fore, strict water pollutant discharge standard DB37/599-2006
(Shandong Environmental Protection Agency, 2006)must be adhered
to by the textile factories located in this region to avoid enforced
discontinuation of production by the government agencies. More-
over, the textile dyes commonly used in the textile industry exhibit
anti-oxidation and anti-photodecomposition properties, and give
high-strength chemical oxygen demand (COD) and high chroma
wastewater (Tichonovas et al., 2013), making the decolorization of
dyeing wastewater much more difficult, thus leading to consider-
able environmental impact on surfacewater (Comparelli et al., 2005;
Gupta et al., 2012; Krissanasaeranee et al., 2010). Hence, a rapid and
un.com (Qinyan Yue).

o-Environmental Science
efficient technique for dye removal is not only desirable but also
imperative for the survival of textile factories located along the
eastern line and the water security of the Water Transfer Project.

Over the past few decades, degradation of dyes by zero-valent
iron (ZVI) particles, especially nanoscale ZVI (nZVI), has emerged
as one of the latest innovative technologies for dye wastewater
treatment and environmental remediation (Bigg and Judd, 2001;
Bokare et al., 2008; Cao et al., 1999; Chang et al., 2006; Epolito et al.,
2008; Fan et al., 2009; Feng et al., 2000; Lin et al., 2008; Liu et al.,
2007; Mu et al., 2004; Nam and Tratnyek, 2000; Perey et al., 2002;
Shu et al., 2007, 2010; Zhang et al., 2005). In addition to the
application of ZVI or nZVI to dye wastewater treatment, combi-
nations of ZVI with various methods have also been attempted.
Recently, microwave (MW) assisted methods such as MW-UV
(Horikoshi et al., 2002, 2004b), MW-Fenton (Gromboni et al., 2007),
MW-H2O2 (Klán and Vavrik, 2006; Prasannakumar et al., 2009), and
s, Chinese Academy of Sciences. Published by Elsevier B.V.
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MW-K2S2O8 (Lee et al., 2009) have gained popularity, as indicated
by numerous publications (Remya and Lin, 2011a). These studies
concluded that MW radiation could enhance the efficiency of
advanced oxidation processes for the degradation of organic
pollutants (Gromboni et al., 2007; Yang et al., 2009; Zhang et al.,
2007; Zhanqi et al., 2007).

The removal of organics using MW radiation in combination
with ZVI and nZVI (henceforth denoted as MW–ZVI or MW–nZVI)
has also gained interest in the last few years, because it provides
fast and effective degradationof organicwastewaterwithout abiotic
reduction and oxidant dosage. Oh et al. (2006) reported first that 98%
of perchlorate in water was removed by cast iron in 1 hr via
microwave heating at pH 7.4. Jou (2008) degraded 1000 mg/L of
pentachlorophenol using 700 W MW power and 0.5 g/L ZVI,
achieving a removal efficiency exceeding 99% in 30 sec. Lee et al.
(2010) reported that MW–nZVI could reduce the chlorobenzene
activation energy by 6.1 kJ/mol and increase chlorobenzene remov-
al efficiency 4.1 times. Furthermore, Lee and Jou (2012) found that
nZVI with the application of MW radiation had greater ability to
reduce the chlorobenzene activation energy than commercial
micron-sized iron particles. Fu et al. (2010) developed a novel
method of zero-valent iron/activated carbon combined with micro-
wave discharge electrodeless lamp/sodium hypochlorite to remove
Reactive Red 195, and obtained 100% color removal efficiency and
82% COD removal efficiency. Remya and Lin (2011b) found that
complete carbofuran degradation could be accomplished in 5 min
by MW–ZVI at pH 10 and 80°C.

The removal of dye from wastewater is a major concern,
especially in the sensitive area along the South-to-North Water
Transfer project of China. Although it has been accepted that
MW–nZVI is a highly efficient method for the removal of organics,
to the best of our knowledge, the removal of Solvent Blue 36 and
Reactive Yellow K-RN from aqueous solution by MW–nZVI has not
been reported previously. Hence, to advance our understanding of
the reduction of dyes in the environment, we designed various
aqueous systems to investigate the kinetics of the removal of
these two dyes via MW–nZVI. The effects of key parameters
including nZVI dosage, initial pH, and temperature on the dyes
removal were examined to study the removal kinetics.
1. Materials and methods

1.1. Materials

Analytical grade reagents were used in all cases (except when
noted) and were purchased from Shanghai Chemical Reagents
Company, Shanghai, China. Organic dyes, namely, Solvent Blue
36 (C20H22N2O2, purity: ≥98%) and Reactive Yellow K-RN (C21H17-

ClN8O7S2, purity: ≥98%), which were obtained from Liaocheng
Sanhe Textile Co., Ltd., Shandong, China, were used without any
purificationas the target contaminants. Themolecular structures
of these organic dyes are shown in Fig. 1. All solutions were
preparedusing 18 MΩ cmultrapureMilli-Qwater (MQ) and stored
in the dark at 4°Cwhen not in use. All glassware and plastic ware
were soaked in 5% (V/V) HCl for several days and rinsed
thoroughly with MQ before use. All experiments were performed
under conditions in which exposure to light was minimized by
wrapping the reaction vessel with a dark cloth.

A background solution containing 2.0 mmol/L NaHCO3 and
0.1 mol/L NaCl was prepared one week prior to the commence-
ment of each experiment to ensure that equilibrium between the
background solution and the atmosphere was reached. 0.1 mol/L
Fe(III) solution, 0.16 mol/L NaBH4 solution, 50 mg/L Solvent Blue
36 (hereafter, Blue) stock solution and 60 mg/L Reactive Yellow
K-RN (hereafter, Yellow) stock solution were prepared prior to
use. Starch was vacuum-dried for 6 hr at 50°C before use.

1.2. Preparation of nanoscale zero-valent iron

The nZVI particles were prepared based on a liquid-phase
chemical reduction method (Joo et al., 2004; Wang and Zhang,
1997). However, starch was added to the 0.1 mol/L Fe(III) solution
as the dispersant, using an starch-to-iron mass ratio of 0.65:1. To
fabricate sufficient nZVI particles for the dye-removal experi-
ments, 500 mL of amixed solution of Fe(III) and starchwas placed
into a 1 L conical flask for each experiment, and N2 was then
pumped into the solution for 3 hr to eliminateO2. In thenext step,
the 0.16 mol/L NaBH4 solution was dropped into the reaction
vessel at a rate of 2 drops/sec using a dropping funnel. Ferric iron
was then reduced and black nZVI particles were precipitated at
ambient temperature under stirring, according to the following
reaction:

Fe H2Oð Þ63þ þ 3BH4
− þ 3H2O→Fe0 sð Þ þ 3B OHð Þ3 þ 10:5H2: ð1Þ

NaBH4 was continually added until no further formation of
nZVI was observed. The freshly prepared nZVI was quickly
collected on a 0.45-μm membrane filter by filtration under
suction and was sequentially washed three times using
10−4 mol/L HCl, MQ, and anhydrous ethanol for the removal of
iron oxides, soluble ions, and water molecules, respectively.
The wet nZVI was immediately vacuum-dried at 60°C for 6 hr.
Theweight of the nZVI particles produced in thiswaywasmore
than 2.5 g with a consistent yield of ≥89%.

1.3. Kinetics of dye removal by MW–nZVI

The removal of dyes from the background solution using MW–
nZVI was performed in a 2.45-GHZ MCR-3 microwave chemical
reactor (Yuhua Instrument, Gongyi, Henan, China) equipped
with a condenser tube and a stirring apparatus. Various
amounts of nZVI were added to the 250 mL 50 mg/L Blue
solution or 60 mg/L Yellow solution with varying pH (5.0, 7.0,
and 9.0) in Pyrex® vessels (500 mL conical flask). The pH value
was measured using a PHS-3C pH meter (Leici Instrument,
Shanghai, China) combined with a glass electrode and Ag/AgCl
reference. It should be noted that the pH was adjusted to the
desired value without adding any buffer, because the presence
of a buffer was anticipated to affect the decolorization reactions
between the dyes and nZVI, though this was not proved in this
study. After completion of the reactions, the pH of the dye
solutions was evaluated again to confirm that there was a little
change (±0.5) in the pH. In this study, the initial pH values were
taken as the “true” values of the investigated solutions. After
the addition of nZVI, dye solutions were immediately
transported to the microwave chemical reactor and constantly
stirred at 50 rpm. Themicrowave chemical reactor with varying
output power (MP = 450, 720, and 900 W) was then switched on.
Samples were removed (using a 3 mL syringe) at appropriate
time intervals and immediately filtered through a 25 mm
diameter 0.45 μm membrane filter. The adsorption of the dye
on the filter membrane was found to be negligible. The sample
temperature was measured using a thermometer, and the dye
concentration was evaluated using UV–Vis spectrophotometry.
In addition, the removal of Blue solution or Yellow solution using



Fig. 1 – Molecular structures of Solvent Blue 36 (a) and Reactive Yellow K-RN (b).
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only nZVI was performed for comparative purposes. To evaluate
the effect of temperature on dye removal, we also carried out the
reactions without MW in a thermostatic magnetic mixer (Yuhua
Instrument, Gongyi, Henan, China) at different temperatures (25
and 70°C) controlled by a constant temperature bath; the samples
were pipetted and treated in an identical manner to that
described above.

1.4. Chemical analysis

The specific surface areas (BET surface area) of the dry nZVI
particles were measured by the nitrogen adsorption method
using an Autosorb-iQ surface analyzer (Quantachrome Instru-
ments, Boynton Beach, Florida, USA). The morphology of the
particles was observed with a Tecnal 20 U-twin (FEI, Hillsboro,
Oregon State, USA) transmission electronmicroscope (TEM) at
120 kV to characterize the size and size-distribution of the
metal particles. Elemental analysis of nZVI was conducted
using a PW4400X-ray fluorescence (XRF, Thermo Electron
Corporation, Waltham, Massachusetts, USA) spectrometer.

The concentration of dyes in the different samples was
measured using a UV–Vis spectrophotometer (TU-1901, Persee,
Beijing, China). From full wavelength scanning, it was found that
the absorption maxima in the UV–Vis spectra of Blue solution
and Yellow solution occur at 603 and 423 nm, respectively.
Calibration curves (linear) for determining thedye concentrations
were developed based on the absorbance signal measured using
excess dye concentrations, giving rise to high r2 values (>0.99).

Total organic carbon (TOC) of dye sampleswas tested by aTOC
analyzer (Aurora 1030D, O.I., College Station, Texas, USA). Fe(II)
concentrations in dye samples were determined spectrophoto-
metrically using the ferrozine method (Gibbs, 1976). The concen-
tration of total soluble Fe (FeT) in dye sampleswas quantifiedwith
an inductive coupled plasma emission spectrometer (OPTIMA
7000DV, PerkinElmer, Waltham, Massachusetts, USA).
2. Results

2.1. Characterization of nZVI

The BET surface area of nZVI was 15.7 m3/g, and the average
pore width and pore volume of agglomerated nZVI were
1.426 nm and 0.07 m3/g, as determined using the Autosorb-iQ
surface analyzer. The BET surface area of nZVI is half of the
value (33.5 m3/g) reported by Wang and Zhang (1997), but is
consistent with the value (15.524 m3/g) reported by Taha and
Ibrahim (2014). A TEM image of the synthesized nZVI is shown
in Fig. 2a, in which perfectly spherical, black nZVI particles ca.
40–70 nm in diameter can be observed; however, because the
synthesized nZVI particles agglomerate when not used, an
accurate measurement of the diameter of the individual
particles was not possible in this study. Nevertheless, the
diameter can be calculated to be 48.6 nm from the BET surface
area using the equation from Taha and Ibrahim (2014),
indicating the formation of smaller particles than previously
reported (Joo et al., 2004; Wang and Zhang, 1997). The reduced
size of the nZVI particles indicates that the presence of starch in
the nZVI preparation process dispersed the nZVI particles in
solution to give rise to smaller nZVI particles. Based on the XRF
analysis of nZVI (Fig. 2b), the elemental composition of nZVI
was determined to be 99.71% Fe and 0.134% Cl, indicating that a
small amount of Cl− ions in the solution was absorbed onto the
nZVI during preparation. It should be noted that XRF could not
be used to determine the presence of oxygen because of the low
fluorescence quantum yield of light elements. Therefore, the
elemental composition of nZVI determined fromXRFmay have
some errors. However, it is believed that oxygen would be
present in very small proportions because the production of
nZVI was performed under anaerobic conditions.

2.2. Kinetics of dyes removal by nZVI and MW–nZVI

Typical calibration data for investigating the kinetics of dye
removal are shown in Fig. 3. The efficiency of the dye removal
using only nZVI increased gradually with increasing contact
time. During the initial 15 min (first stage), the dyes were
rapidly discolored with a high probability of the adsorption of
organic molecules onto the nZVI surface and the reduction of
the chromophoric group of the organic molecules in the
aqueous phase. The reaction involving the dissolution of
ferrous ions of nZVI and electron transfer has been proved to
be a fast process in a previous study (Shu et al., 2007). After
complete mixing of nZVI and the dye solution, most of the
active surface of nZVI was occupied by dye molecules; thus,
the reaction rate slowed down and approached equilibrium,
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Fig. 2 – Transmission electronmicroscopy image (a) and X-ray fluorescence spectrum (b) of synthesized nanoscale zero-valent iron.
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as observed for the last 15 min of the overall reaction time of
30 min. It is evident from Fig. 3 that nZVI was more effective
for the removal of Blue than for Yellow, which is attributed
primarily to the larger number of organic groups present in a
molecule of Yellow compared to a molecule of Blue; thus, the
former requires more nZVI to be degraded.

The use of MW radiation in combination with nZVI
markedly increased the dye-removal rate and efficiency in
both cases. When 50 mg/L Blue solution was subjected to
treatment with MW–nZVI, as shown in Fig. 4, the maximum
Blue removal efficiency achieved after 5 min was 56.5% and
81.4% using nZVI content (CFe) 0.1 and 0.2 g/L at pH 7.0 and MP
450 W, respectively. These values are respectively 21.1% and
19.9% higher than the dye-removal efficiency achieved with
nZVI alone in 30 min. When the MP was increased from 450 to
900 W, the maximum removal efficiency increased from
56.5% to 66% for CFe = 0.1 g/L and from 80.9% to 90.2% for
CFe = 0.2 g/L. The trends observed for the removal of Yellow
with MW–nZVI (Fig. 5) were similar to those observed for Blue.
Using CFe = 0.1 and 0.3 g/L, the maximum removal efficiencies
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450 W, which were achieved within 5 min, representing
impressive enhancements of 27.3% and 28.9% relative to that
achieved with only nZVI in 30 min. Furthermore, increasing
the MP from 450 to 900 W could only enhance the removal
efficiency of Yellow from 40.4% to 50.0% for CFe = 0.1 g/L and
from 60.0% to 66.7% for CFe = 0.3 g/L. It was shown that the
removal efficiency increased nonlinearly with increasing MP.
Hence, the dominant factor influencing dye removal was the
nZVI loading, whereas the MW primarily exerted an enhance-
ment effect.

2.3. Effect of pH on dye removal by nZVI and MW–nZVI

The effect of pH on the dye removal efficiency was evaluated.
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removal of 60 mg/L Yellow using CFe = 0.3 g/L decreased from
31.8% at pH = 5.0 to 22.9% at pH = 9.0. In addition to the effects
of nZVI loading and MW power on dye removal, the effect of
pH on the dye-removal efficiency was also investigated
(Fig. 3). At MP = 450 W, the maximum removal efficiency of
Blue using CFe = 0.2 g/L achieved in 5 min decreased from
93.8% at pH = 5.0 to 80.9% at pH = 9.0, and the maximum
removal efficiency of Yellow using CFe = 0.3 g/L achieved in
5 min decreased from 59.9% at pH = 5.0 to 51.5% at pH = 9.0.

Increasing the pH was evidently an unfavorable factor for
dye removal in this study, which is similar to the trend
observed for Methyl Orange removal using nZVI (Fan et al.,
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lines) for the kinetics of Yellow removal by MW–nZVI at pH = 7.0
2009) and for nitrate removal using nZVI (Yang and Lee, 2005).
The faster corrosion of nZVI at lower pH leads to the
generation of more hydroxyl radicals in the solution, with
the consequent degradation of more dye molecules and
higher dye-removal efficiency. Additionally, the point of zero
charge of nZVI was determined to be 8.0 by Li et al. (2006);
therefore, the surface of nZVI is positively charged at pH > 8.0,
and can thus attract negatively charged amine groups in the
dye molecules, leading to the better adsorption of the dyes on
the surface of nZVI. At pH < 8.0, the surface of nZVI is
negatively charged, which affects the adsorption of the dyes
on its surface.
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2.4. TOC removal by nZVI and MW–nZVI

The intermediates during dye degradation may have no
contribution to the absorbance at the studied wavelengths,
while TOC levels in the solutions can be used to qualify the
amount of organics. Therefore, the removal efficiencies of
TOC were simultaneously measured at varying pH. It can be
seen in Fig. 6 that the maximum TOC removal efficiency by
nZVI was 25.6% for Blue (20.3% for Yellow) after 30 min at
pH 5.0, and the maximum TOC removal efficiency by MW–
nZVI was 60.2% for Blue (41.5% for Yellow) after 5 min at pH =
5.0. It was evident in both cases that the use of MW radiation
markedly increased the TOC efficiency (by ca. 25%) and the
TOC removal efficiency was lower than the dye degradation
efficiency (by ca. 20%). The results further indicated that the
dyes were degraded in the nZVI or MW–nZVI systems by
producing a number of intermediates prior to mineralization,
and the use of MW radiation dramatically enhanced the
mineralization efficiency.

2.5. Formation of iron species in nZVI and MW–nZVI systems

In the process of dye degradation by nZVI or MW–nZVI, iron
species, including ferrous iron and ferric iron, can be formed
via the two-electron transfer between nZVI and oxygen. To
verify the mechanism of dye degradation, the concentrations
of Fe(II) and FeT during the Blue removal were determined
simultaneously. The concentration of Fe(II) in the systemwith
CFe = 0.2 g/L was measured as 0.120, 0.013, and 0.008 mmol/L
after 30 min at pH 5.0, 7.0, and 9.0, respectively, while the
concentration of Fe(II) in the system with CFe = 0.2 g/L and
MP = 450 W was markedly reduced to 0.082, 0.0017, and
0.0002 mmol/L after 5 min at pH 5.0, 7.0, and 9.0, respectively,
indicating that the corrosion of nZVI was faster at lower pH
and the reaction of Fe(II) with oxygen to produce Fe(III) and
H2O2 in the presence of MW radiation was faster than that in
the absence of MW radiation. However, the concentration of
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Fig. 6 – TOC removal efficiency of dye solutions using
nanoscale zero-valent iron (nZVI) and microwave radiation
in combination with nanoscale zero-valent iron at various
pH levels.
FeT had the opposite tendency after the use of MW radiation.
The higher residual FeT at CFe = 0.2 g/L and MP = 450 W (0.242,
0.138 and 0.091 mmol/L after 5 min at pH 5.0, 7.0, and 9.0)
compared to that at CFe = 0.2 g/L (0.154, 0.042 and 0.025 mmol/L
after 5 min at pH 5.0, 7.0, and 9.0) was attributed to the fast
corrosion of nZVI in the presence of MW radiation.
3. Discussion

3.1. Kinetic model for dye removal by nZVI and MW–nZVI

To describe the kinetics of dye removal by nZVI and MW–nZVI,
the following empirical equation was used (Shu et al., 2007):

C ¼ C0−Ceð Þ � σ � e−ket þ Ce ð2Þ
where, C (mg/L) is the concentration of the dye at reaction time t,
C0 (mg/L) is the initial concentration of the dye, Ce (mg/L) is the
concentration of the dyewhen the reaction reaches equilibrium,
ke (sec−1) indicates the empirical rate constant for dye-removal
kinetics, and σ denotes the variation coefficient, which was
determined to be 1 by Fan et al. (2009).

The half-life (t1/2, sec) of the dye can be expressed by the
following equation:

t1=2 ¼ ln2
k

: ð3Þ

Using nonlinear regression, a summary of the constants
obtained (Ce, ke, and t1/2) for dye degradation kinetics based on
different experimental data is given inTable 1. The r2 value ranged
from 0.918 to 0.994, indicating good agreement between the
empirical equation (Eq. (2)) and the observed data. The good fits of
the kinetic models using different experimental variables are
shown in Figs. 3–5. Variations of Ce withMP for different dyes and
pH = 7.0 with different nZVI loadings are consistent with the
experimental results demonstrating thatMWradiation effectively
enhanced the dye-removal efficiency, and that increasing the MP
did not linearly increase the removal efficiency. Additionally,
whenmore nZVI was loaded into the dye solutions, the enhance-
ment in the dye-removal efficiency followingMW radiation of the
system was much higher. This result also indicated that, in this
case, the dominant factor influencing the dye removal was nZVI,
and MW radiation promoted dye removal by nZVI.

The kinetics of dye removal by MW–nZVI could be described
using the pseudo first-ordermodel (Figs. 4 and 5)with the r2 value
ranging from 0.829 to 0.984 (Table 2). The rate constants k1
increased with increasing nZVI dosage andMWpower, and with
the samedosage of nZVI andMWpower, the rate constants k1 for
Blue were higher than for Yellow. However, the kinetics of dye
removal by nZVI without MW radiation did not comply with the
pseudo first-order model (figures were not shown), which is
consistent with studies by Yang and Lee (2005) and Wang et al.
(2006) and inconsistent with studies from Nam and Tratnyek
(2000), Bigg and Judd (2001), and Epolito et al (2008).

3.2. Role of MW radiation in dye removal

It was found herein that the combination of MW radiation and
nZVI was useful for achieving higher dye decolorization
efficiency in a shorter duration than that achieved with only



Table 1 – Parameters for empirical kinetics model.

Experimental variables Empirical kinetics

Dyes CFe (g/L) T (°C) pH Time (min) MP (W) Ce (mg/L) ke (sec−1) t1/2 (sec) r2

Blue 0.1 25 7.0 30 0 33.2 4.99 × 10−3 139 0.986
0.1 70 7.0 30 0 26.5 5.64 × 10−3 122.8 0.974
0.1 65 7.0 5 450 19.1 8.58 × 10−3 80.8 0.987
0.1 71 7.0 3 720 8.13 7.09 × 10−3 97.7 0.935
0.1 78 7.0 3 900 7.90 7.09 × 10−3 94.8 0.951
0.2 25 7.0 30 0 20.7 6.09 × 10−3 113.8 0.991
0.2 70 7.0 30 0 18.0 6.04 × 10−3 114.8 0.990
0.2 66 7.0 5 450 1.87 9.18 × 10−3 75.5 0.986
0.2 73 7.0 3 720 1.31 10.4 × 10−3 66.9 0.985
0.2 79 7.0 3 900 0.79 10.1 × 10−3 69.0 0.981
0.2 25 5.0 30 0 17.9 5.09 × 10−3 136.2 0.954
0.2 25 9.0 30 0 26.2 4.70 × 10−3 147.6 0.990
0.2 65 5.0 5 450 0.893 10.9 × 10−3 63.5 0.989
0.2 66 9.0 5 450 4.10 10.4 × 10−3 66.9 0.985

Yellow 0.1 25 7.0 30 0 52.6 3.04 × 10−3 228.1 0.918
0.1 70 7.0 30 0 49.0 9.98 × 10−3 69.5 0.979
0.1 65 7.0 5 450 34.3 7.66 × 10−3 90.5 0.983
0.1 69 7.0 3 720 32.3 20.8 × 10−3 33.4 0.972
0.1 78 7.0 3 900 29.1 20.4 × 10−3 34.0 0.971
0.3 25 7.0 30 0 43.6 11.4 × 10−3 61.1 0.994
0.3 70 7.0 30 0 42.6 9.29 × 10−3 74.6 0.941
0.3 65 7.0 5 450 14.4 7.79 × 10−3 89.0 0.962
0.3 70 7.0 3 720 9.60 7.05 × 10−3 98.3 0.980
0.3 78 7.0 3 900 14.0 9.58 × 10−3 72.4 0.973
0.3 25 5.0 30 0 41.3 8.38 × 10−3 82.7 0.990
0.3 25 9.0 30 0 46.9 7.00 × 10−3 147.6 0.947
0.3 65 5.0 5 450 12.7 7.04 × 10−3 98.5 0.957
0.3 66 9.0 5 450 20.3 7.69 × 10−3 90.2 0.969

CFe: nZVI content; T: temperature; MP: output power of microwave.
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nZVI. The rapid, selective, and three-dimensional MWheating
sharply elevated the temperature of the dye solutions with
different nZVI loadings (Fig. 7), and the final temperature of
the dye solutions was ca. 70°C (Table 1), indicating that the
nZVI loading did not significantly affect the increase in the
solution temperature. Nevertheless, it cannot be conclusively
stated that nZVI was not a significant MW-absorbing material
considering the small quantity of nZVI used in this study. It
can only be deduced that the dominant MW-absorbing
material in this system was water. To investigate the effect
of temperature on dye removal by nZVI, several experiments
were performed at different temperatures (25 and 70°C) in a
thermostatic magnetic mixer (Figs. 4 and 5). Although the
dye-removal efficiency increased slightly with temperature,
this increase was far less than the efficiency achieved with
MW thermal radiation. This implies that the rapid and
selective heating of the dispersant (water in this case) by
MW radiation was not the dominant mechanism for dye
removal, which was consistent with the research by Horikoshi
and Serpone (2014). Previous studies (Horikoshi et al., 2004a;
Table 2 – Parameters of pseudofirst-order model for dye remov
zero-valent iron at pH = 7.0.

CFe (g/L) Blue

0.1 0.2

k1 × 10−3 (sec−1) 2.84 5.04 5.29 7.78 8.76
r2 0.920 0.954 0.970 0.946 0.927
Jones et al., 2002; Liu et al., 2004; Lü et al., 2009) showed that
hot spots were induced in the solutions when MW-absorbing
materials such as activated carbon and TiO2 were added to the
MW medium. These hot spots may not induce an apparent
increase in the temperature but may produce analogous
plasmas around the hot spots (Horikoshi et al., 2004a),
accelerating the degradation of target pollutants (Horikoshi
et al., 2002). Meanwhile, although the quantized energy of MW
radiation (10−6–10−3 eV), which is much less than that of a
chemical bond (100–101 eV), cannot directly induce breakage
of the chemical bonds (Müller et al., 2003), MW radiation can
cause vibration or rotation of the chemical bonds, and hence
weaken them and reduce the activation energy during the
reaction with nZVI. Another possible explanation is that MW
radiation may disrupt the hydrogen bonding of water mole-
cules, thus activating them and promoting the desorption of
water molecules from the surface of nZVI, increasing the
surface activity of nZVI toward dye molecules. It was also
revealed that the use of MW radiation could accelerate the
corrosion of nZVI and the reaction of Fe(II) with oxygen to
al by microwave radiation in combination with nanoscale

Yellow

0.1 0.3

10.1 1.58 3.13 3.65 4.28 4.79 4.85
0.984 0.929 0.836 0.829 0.910 0.946 0.928
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Fig. 7 – Elevated temperature curve for Blue removal by CFe =
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produce the Fe(III) and H2O2, and enhance the degradation of
dyes as a consequence.
4. Conclusions

The rapid and effective removal of dyes (Solvent Blue 36 and
ReactiveYellowK-RN) byMW–nZVIunder different experimental
conditions was demonstrated herein. MW radiation signif-
icantly enhanced the degradation of the dyes and the
mineralization efficiency in the presence of nZVI in 5 min.
Increasing the pH decreased the efficiency of dye removal in
the presence of both nZVI as well as with MW–nZVI;
however, the dye-removal efficiency did not increase
linearly in response to MP. Both the kinetics of dye removal
by nZVI and byMW–nZVI could be described by an empirical
equation. However, the pseudo-first-order model was only
suitable for the kinetics of dye removal by MW–nZVI.

Although it has been concluded that the multiple actions
of MW radiation may be the reaction mechanism for dye
removal (as determined by eliminating the effect of rapid and
selective heating of MW radiation on dye removal and
accelerating the reaction of Fe(II) with oxygen to produce the
Fe(III) and H2O2), the pathways for the degradation of dyes and
a detailed understanding of the reactions between the dyes
and nZVI under MW radiation were not elucidated in this
study. These studies are currently underway and will be
reported in a future paper.
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