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Prediction of the biodegradability of organic pollutants is an ecologically desirable and
economically feasible tool for estimating the environmental fate of chemicals. In this paper,
stepwise multiple linear regression analysis method was applied to establish quantitative
structure biodegradability relationship (QSBR) between the chemical structure and a novel
biodegradation activity index (qmax) of 20 polycyclic aromatic hydrocarbons (PAHs). The
frequency B3LYP/6-311+G(2df,p) calculations showed no imaginary values, implying that all
the structures are minima on the potential energy surface. After eliminating the parameters
which had low related coefficient with qmax, the major descriptors influencing the
biodegradation activity were screened to be Freq, D, MR, EHOMO and ToIE. The evaluation
of the developed QSBR mode, using a leave-one-out cross-validation procedure, showed
that the relationships are significant and the model had good robustness and predictive
ability. The results would be helpful for understanding the mechanisms governing
biodegradation at the molecular level.
© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) are produced by
chemical industry for a variety of applications, including
pharmaceuticals, cosmetics, pesticides, disinfectants, agro-
chemicals, dyestuffs, antifreeze, corrosion inhibitor, coal–tar
wastes and creosote wood preservation (Wang et al., 2007;
Haritash and Kaushik, 2009). Several PAHs have been reported
to display toxic, mutagenic and carcinogenic properties even
when present in low concentrations. These compounds pose
a serious threat to humans and marine animals and have
received increasing awareness in the aquatic environment
(Mearns et al., 2009). Their fate in environment includes
volatilization, photo-oxidation, chemical oxidation, adsorption
on soil particles, leaching, andmicrobial degradation which are
n13946003379@163.com (

o-Environmental Science
the major degradation processes for PAHs (Zheng et al., 2007;
Augulyte et al., 2009; Kalmykova et al., 2014).

The quantitative structure–biodegradability relationship
(QSBR) developed from the quantitative structure activity
relationships (QSAR) is a tool used to describe and predict the
biodegradability of organic compounds (Okey and Stensel,
1996). The objectives of QSBR studies are to understand
mechanisms of biodegradation, to classify chemicals accord-
ing to relative biodegradability, and to predict the biodegrad-
ability of new organic compounds. It is also valuable for
estimating the environmental fate of pollutants and the risk
assessment of PAHs (Raymond et al., 2001; Baboshin and
Golovleva, 2012). Toward these objectives, much research has
been performed to develop reliable QSBR models. Ferreira
(2001) performed a structure based study of the
Hongjun Han).
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biodegradation rates of 22 benzene derivatives in aqueous
systems. They revealed that the computed averaged dipole
polarizabilities and the summation of the Raman activities
over vibrational degrees of freedom of benzene derivatives are
in excellent linear correlation with the observed first-order
biomass-normalized rate coefficient of benzene derivatives. A
negative correlation (correlation coefficient 0.99) between
denitrification rate and molecular connectivity index 1Xv

reflected that the degradation of aromatic heterocyclic com-
pounds in activated sludge was substantially influenced by
molecular size and the electronic properties (Wammer and
Peters, 2005). Meanwhile, during O3/UV degradation process,
a QSAR model was established which revealed that the
degradation rate depended on the highest occupied molecu-
lar orbital and delocalization energy (Chen et al., 2001).

Currently, in the model development process of the QSBR,
the half-lives, theoretical oxygen demand (ThOD) and biological
oxygen demand (BOD) were commonly used as the biodegrad-
ability indexes (Okey and Stensel, 1996). Although somemodels
are available for the %BOD predictions, their applicability is
limited to specific classes (Philipp et al., 2007). No attention has
been paid to the theoretical considerations of the relationship
between biokinetic parameters of compound and the descrip-
tors. The objective of the present study was to develop valid
QSBR for appropriate parameter expressing the kinetics of
bacterial biotransformation of PAHs. The relationship between
specific biodegradation rate (qmax) and molecular structure
Table 1 – Structure and biodegradation activity value of 20 PAH

Compound Structure qmax (mg/(L·hr))

Naphthalene 61.36

1-Methylnaphthalene 210.52

2-Methylnaphthalene 240.97

1,5-Dimethylnaphthalene 152.63

2,3-Dimethylnaphthalene 101.49

2,6-Dimethylnaphthalene 172.23

2,3,5-Trimethylnaphthalene 92.28

Acenaphthene 89.59

Acenaphthylene 189.41

Fluorene 81.47
descriptors was gradually established using multiple linear
regression analysis.
1. Materials and methods

1.1. Biodegradation data

Experiments were designed to measure biodegradation rates
of 20 PAHs in aqueous systems. These experiments were
performed individually for each PAH at a concentration
significantly below its aqueous solubility to ensure that no
separate PAH phase was present. Experimental measurement
of the biokinetic parameters was based on the Andrews
model, an extension of the Monod model that accounts for
substrate inhibition (Wammer and Peters, 2005):

q ¼ qmax � C

Ks þ C þ C2=K I
ð1Þ

where, q (mg/(L·hr)) is the specific biotransformation rate,
C (mg/L) is the substrate concentration, qmax (mg/(L·hr)) is the
maximal specific biotransformation rate, KS (mg/L) is the
biotransformation affinity coefficient, and KI (mg/L) is the
substrate inhibition coefficient. The fitting parameters in
the above equation are presented in Table 1. The biokinetic
of qmax was used as the biodegradability index. The values of
s.

Compound Structure qmax (mg/(L·hr))

1-Methylfluorene 161.54

Anthracene 178.19

1-Methylanthracene 76.33

Phenanthrene 108.94

1-Methylphenanthrene 72.85

2-Methylphenanthrene 138.39

3,6-Dimethylphenanthrene 159.64

Fluoranthene 95.48

Pyrene 61.41

1-Methylpyrene 32.75



Table 2 – Descriptors of PAHs used in QSBR study.

Compound LogKOW D
(Å)

0Xv 1Xv MR
(m3/mol)

NRB EHOMO

(eV)
ELUMO

(eV)
ToIE
(eV)

Freq
(cm−1)

DE
(kJ/mol)

Naphthalene 1.37 2 9.342 3.114 4.0418 4 −8.7429 −2.8212 −1473.2851 867.125 89.384
1-Methylnaphthalene 0.19 2 8.903 2.945 5.5604 3 −6.9381 −1.9214 −987.0517 743.439 95.527
2-Methylnaphthalene 1.24 2 9.013 3.048 6.1983 3 −6.5742 −1.5890 −926.1428 698.381 82.018
1,5-Dimethylnaphthalene 2.19 3 6.438 1.917 4.3195 4 −8.4719 −2.3461 −1293.4271 723.014 103.284
2,3-Dimethylnaphthalene 0.73 3 5.189 1.482 3.0873 4 −7.7943 −1.8472 −1738.0924 807.725 64.893
2,6-Dimethylnaphthalene 1.68 4 6.724 2.049 4.2981 5 −10.3725 −2.9425 −1095.3758 715.293 71.582
2,3,5-Trimethylnaphthalene 1.35 3 4.024 1.273 2.9946 5 −6.9318 −1.8219 −1437.4978 791.785 87.017
Acenaphthene 1.87 2 2.571 0.842 3.4571 6 −9.5321 −2.0481 −1631.8567 780.269 60.491
Acenaphthylene 0.94 3 5.617 1.891 5.0278 6 −7.8736 −1.7832 −1037.2154 738.153 79.279
Fluorene 0.57 3 3.506 1.139 2.9012 5 −12.6981 −4.2704 −1537.2803 803.942 93.493
1-Methylfluorene 0.81 2 1.783 0.582 4.1254 6 −8.8364 −2.4378 −1358.0874 758.236 81.572
Anthracene 1.48 4 2.946 0.947 2.5031 6 −7.1734 −2.0941 −2088.6796 705.293 76.249
1-Methylanthracene 1.09 4 6.178 2.014 2.7988 6 −11.8942 −3.8926 −1948.1732 805.179 99.027
Phenanthrene 3.04 5 8.934 3.173 3.1806 7 −9.9576 −3.4123 −1703.9718 772.895 82.687
1-Methylphenanthrene 2.95 5 3.016 0.927 4.3189 7 −12.5638 −4.9831 −1439.0267 791.073 94.284
2-Methylphenanthrene 0.79 4 5.284 1.893 3.7923 7 −9.4932 −3.0874 −1580.2693 772.038 103.912
3,6-Dimethylphenanthrene 0.18 6 5.013 1.378 2.6847 6 −8.4271 −2.4892 −1274.3281 718.386 127.103
Fluoranthene 2.84 4 4.820 1.694 3.0956 8 −10.4831 −3.0461 −1892.5286 829.591 86.268
Pyrene 2.41 5 1.849 0.593 3.2153 8 −15.2911 −4.9783 −2105.3924 815.675 93.891
1-Methylpyrene 1.58 6 7.135 2.439 2.8539 8 −13.9804 −4.2935 −2379.5871 873.248 110.392
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the kinetic parameters for Andrews equation were obtained
using nonlinear regression analysis in MINITAB 14.0

1.2. Geometry optimization and molecular descriptors

The equilibrium geometries of all PAHs were fully optimized
using the density functional theory (DFT) method. The DFT
calculations were run using a moderate basis set size
(6-311+G(2df,p)) In all optimizations, the initial structures
were pre-minimized using a force-field in Gaussian 09
program. Since the structures are relatively rigid, the precise
starting geometries were not considered to be particularly
important. We performed the optimizations in the framework
of the C1 and C2 point groups. The frequency B3LYP/
6-311+G(2df,p) calculations showed no imaginary values,
implying that all the structures are minima on the potential
energy surface.

There are 11 molecular descriptors used in this article. Six
descriptors such as octanol/water partition coefficient (KOW),
zero molecular connective index (0Xv), first molecular connec-
tive index (1Xv), molecular diameter (D), molar refractivity
(MR) and number of rotatable bonds (NRB) were calculated by
Algorithms Builder 1.0. The quantum chemical descriptors of
the highest occupied molecular orbital (EHOMO), the energy of
lowest unoccupied molecular orbital (ELUMO), total energy of
electronics (ToIE), thewagging vibration frequency of thewhole
molecule (Freq) and delocalization energy (DE) were calculated
by using the software of Chemofiice 6.0. on energy-minimized
structures at a semi-empirical level (AM1). The related chemical
descriptors of 20 PAHs are listed in Table 2.
Table 3 – Correlation coefficients of descriptors used in this stu

LogKOW D 0Xv 0Xv MR

qmax 0.493 0.601 −0.402 −0.398 0.573
1.3. Development of QSBR equation

The stepwise regression analysis was carried out by MINITAB
14.0, including dependent variable qmax and independent
variables mentioned above obtained from calculating results.
Procedures for stepwise regression analysis were described by
Xu et al. (2012). The goodness of the established model was
accessed by the following statistical parameters: R (correlation
coefficient), R2 (coefficient of determination), S.E. (standard
error of regression estimation), F (Fisher check value) and
RMSE (the root mean squared error).
2. Results and discussion

2.1. Unitary linear regression

Prior to stepwise multiple linear regression analysis, the
monadic linear correlation between 11 chemical descriptors
and qmax was studied respectively. The related coefficients are
shown in Table 3. As can be seen in Table 3, there is the
highest linear correlation coefficient (R = −0.844) between
qmax and Freq. Meanwhile there is the lowest linear correla-
tion coefficient (R = 0.368) between qmax and DE. The scatter
diagram of Freq and DE with qmax was shown as Fig. 1. After
eliminating the parameters which had low related coefficient
(|R| < 0.5) with qmax, we found that the major descriptors
influencing the biodegradation activity were Freq, D, MR,
EHOMO and ToIE.
dy.

NRB EHOMO ELUMO ToIE Freq DE

−0.389 0.837 −0.413 0.701 −0.844 0.368
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2.2. Quantitative structure–biodegradability relationship

In order to get the best QSBR model, Freq and D were initially
taken as independent variables to carry out linear regression
analysis, and we got Eq. (2):

qmax ¼ 147:2−0:11 Freqþ 31:6 D ð2Þ
n = 20, R = 0.871, R2 = 0.703, S.E. = 10.18, F = 27.69, RMSE = 7.89.

To investigate the influence of adding variables to QSBR,
we added MR as an independent variable and got Eq. (3) based
on Eq. (2). Moreover, by adding EHOMO as an independent
variable we got Eq. (4) based on Eq. (3), and by adding ToIE as
an independent variable we got Eq. (5) based on Eq. (4).

qmax ¼ 109:3−0:15 Freqþ 27:5 Dþ 4:52MR ð3Þ

n = 20, R = 0.921, R2 = 0.852, S.E. = 5.084, F = 23.51, RMSE = 3.782

qmax ¼ 172:9−0:31 Freqþ 19:6 Dþ 8:97MR þ 3:82 EHOMO ð4Þ
Table 4 – Experimental and predicted biodegradabilities.

Compound qmax (exp.)

By Eq. (3) Resi

Naphthalene 61.36 49.32 12
1-Methylnaphthalene 210.52 199.84 10
2-Methylnaphthalene 240.97 262.04 −21
1,5-Dimethylnaphthalene 152.63 172.42 −19
2,3-Dimethylnaphthalene 101.49 111.44 −9
2,6-Dimethylnaphthalene 172.23 158.17 14
2,3,5-Trimethylnaphthalene 92.28 114.05 −21
Acenaphthene 89.59 94.28 −4
Acenaphthylene 189.41 218.24 −28
Fluorene 81.47 102.18 −20
1-Methylfluorene 161.54 206.85 −45
Anthracene 178.19 202.98 −24
1-Methylanthracene 76.33 88.45 −12
Phenanthrene 108.94 139.83 −30
1-Methylphenanthrene 72.85 82.94 −10
2-Methylphenanthrene 138.39 108.24 30
3,6-Dimethylphenanthrene 159.64 176.54 −16
Fluoranthene 95.48 104.28 −8
Pyrene 61.41 83.93 −22
1-Methylpyrene 32.75 46.03 −13
n = 20, R = 0.951, R2 = 0.901, S.E. = 4.72, F = 25.38, RMSE = 2.23

qmax ¼ 382:1 −0:57 Freqþ 13:4 Dþ 6:08 MRþ 13:24 EHOMO
þ 0:017 ToIE ð5Þ

n = 20, R = 0.969, R2 = 0.946, S.E. = 2.73, F = 34.38, RMSE = 1.032.
By comparing the various parameters in Eqs. (3) to (5), it

can be found that Eq. (5) is an ideal QSBR model. This is
because with the increase of the variable, correlation coeffi-
cient R, determination coefficient R2 and Fisher check value F
become bigger; while standard deviation S.E. and root mean
squared error RMSE become smaller. In order to validate the
predictive ability of different models, predicted values calcu-
lated by different models and experimental values were listed
in Table 4. The relationship between experimental results and
predicted values calculated by Eq. (5) was shown as Fig. 2.
The results show good agreement between predictions and
experimental data. Validation is a crucial aspect of any QSBR
modeling. It is the process by which the reliability and
qmax (calcd.)

dual By Eq. (4) Residual By Eq. (5) Residual

.04 82.69 −21.33 53.24 8.12

.68 227.59 −17.07 202.98 7.54

.07 253.61 −12.64 231.42 9.55

.79 133.4 19.23 141.02 11.61

.95 114.64 −13.15 88.48 13.01

.06 152.38 19.85 180.48 −8.25

.77 77.36 14.92 102.11 −9.83

.69 84.15 5.44 80.53 9.06

.83 191.71 −2.3 178.42 10.99

.71 70.78 10.69 70.84 10.63

.31 150.74 10.8 174.32 −12.78

.79 163.2 14.99 191.05 −12.86

.12 86.62 −10.29 90.84 −14.51

.89 94.67 14.27 124.23 −15.29

.09 59.37 13.48 60.53 12.32

.15 119.43 18.96 129.74 8.65

.9 138.66 20.98 147.43 12.21

.8 86.09 9.39 90.34 5.14

.52 39.6 21.81 72.04 −10.63

.28 43.46 −10.71 40.95 −8.2
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relevance of a procedure are established for a specific
purpose. It is now being accepted that validation is an
important process that includes assessment of issues such
as data quality, applicability of the model and mechanistic
interpretability in addition to statistical assessment (Nandy et
al., 2013). A common method for internally validating a QSBR
model is leave-one-out cross-validation. This has the advan-
tage that each data point is used for both training and
validation on each trail (Zhang et al., 2014). Leave-one-out
cross-validation is normally restricted to applications where
the amount of training data available is severely limited, such
that even a small perturbation of the training data is likely to
result in a substantial change in the fitted model. In the
present study, it makes good sense to adopt a leave-one-out
cross-validation strategy as it minimizes the perturbation to
the data in each trial. The outcome from this procedure is
a cross-validated correlation coefficient (Q2

LOO), which is
usually smaller than the overall R2 for a QSBR mode (Kar and
Roy, 2011). Frequently, Q2

LOO is used as a criterion of both
robustness and predictive ability of the model. Many authors
consider high Q2

LOO (for instance, Q2
LOO > 0.5) as an indicator

or even as the ultimate proof of the high predictive power of
the QSBR mode. For Eq. (5), the Q2

LOO of validation results is
0.927, which was significantly larger than 0.5. So the
established QSBR model performed well with the aspects of
goodness-of-fit, robustness and predictivity.

2.3. Mechanisms interpretation for the established QSBR mode

Freq is a parameter reflected the chemical bond strength.
Biodegradation of PAHs included the fracture of the benzene
ring. Therefore, chemical bond strength of the benzene ring
must be closely correlated with biodegradation activity (Xu et
al., 2012). EHOMO is a parameter associated with the ability to
donate electrons. All EHOMO values are negative; therefore,
smaller EHOMO values indicate electrons that are more strongly
bound to the system, which weakens the biodegradability of
such compounds (Yang et al., 2004). TolEwas the total energy of
all electrons energy and repulsion energy between atomic
nucleuses in a molecule. It was in direct proportion to the
biodegradability of the compounds. When a PAH compound
had lower TolE, the biodegradability would be poorer (Yang et
al., 2006). Molecular diameter (D) indicated the spatial scale in
where electrons in the molecule moved, and characterized the
size of amolecule. Larger diametermoleculesmay interactwith
an enzymemore readily, thus increasing the biodegradability of
this organic compound (Yang et al., 2006). Finally, MR was
directly associated with its electronic property. If an aromatic
compound had bigger MR, the electrons in this molecule was
easier to be lost to form stronger electrostatic, so the biode-
gradability of this aromatic compound was better.
3. Conclusions

The theoretical relationship between biokinetic parameter
(qmax) and molecular descriptors has been investigated based
on stepwise multiple linear regression analysis. According to
the experimental results, the major descriptors influencing the
biodegradation activity were screened to be Freq, D, MR, EHOMO

and ToIE. Assessment based on leave-one-out cross-validation
indicated that the establishedQSBRmodel had good robustness
and predictive ability. Interpretation of the descriptors respon-
sible for biodegradation activity can be useful tools for
designing new biodegradable chemicals and/or predicting the
biodegradability of new chemicals in the environmental hazard
assessment.
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