MBR in Wastewater Reclamation
Highlight articles

129 Rice: Reducing arsenic content by controlling water irrigation
Ashley M. Newbigging, Rebecca E. Paliwoda and X. Chris Le

132 Apportioning aldehydes: Quantifying industrial sources of carbonyls
Sarah A. Styler

Review articles

30 Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013)
Dong-Qing Zhang, K.B.S.N. Jinadasa, Richard M. Gersberg, Yu Liu, Soon Keat Tan and Wun Jern Ng

47 Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland
Alicja Kolasa-Wiecek

113 Mini-review on river eutrophication and bottom improvement techniques, with special emphasis on the Nakdong River
Andinet Tekile, Ilho Kim and Jisung Kim

Regular articles

1 Effects of temperature and composite alumina on pyrolysis of sewage sludge
Yu Sun, Baosheng Jin, Wei Wu, Wu Zuo, Ya Zhang, Yong Zhang and Yaji Huang

9 Numerical study of the effects of local atmospheric circulations on a pollution event over Beijing-Tianjin-Hebei, China
Yucong Miao, Shuhua Liu, Yijia Zheng, Shu Wang and Bicheng Chen, Hui Zheng and Jingchuan Zhao

21 Removal kinetics of phosphorus from synthetic wastewater using basic oxygen furnace slag
Chong Han, Zhen Wang, He Yang and Xiangxin Xue

55 Abatement of SO₂–NOx binary gas mixtures using a ferruginous active absorbent: Part I. Synergistic effects and mechanism
Yinghui Han, Xiaolei Li, Maohong Fan, Armistead G. Russell, Yi Zhao, Chunmei Cao, Ning Zhang and Genshan Jiang

65 Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon
Gang Wang, Baojuan Dou, Zhongshen Zhang, Junhui Wang, Haier Liu and Zhengping Hao

74 Flux characteristics of total dissolved iron and its species during extreme rainfall event in the midstream of the Heilongjiang River
Jiunian Guan, Baixing Yan, Hui Zhu, Lixia Wang, Duian Lu and Long Cheng

81 Sodium fluoride induces apoptosis through reactive oxygen species-mediated endoplasmic reticulum stress pathway in Sertoli cells
Yang Yang, Xinwei Lin, Hui Huang, Demin Feng, Yue Ba, Xuemin Cheng and Liuxin Cui

90 Roles of SO₂ oxidation in new particle formation events
He Meng, Yujiao Zhu, Greg J. Evans, Cheol-Heon Jeong and Xiaohong Yao

102 Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia)
Meryem Jemli, Fatma Karray, Firas Fekri, Slim Loukil, Najla Mhiri, Fathi Aloui and Sami Sayadi
CONTENTS

122 Bioreduction of vanadium (V) in groundwater by autohydrogentrophic bacteria: Mechanisms and microorganisms
Xiaoyin Xu, Siqing Xia, Lijie Zhou, Zhiqiang Zhang and Bruce E. Rittmann

135 Laccase-catalyzed bisphenol A oxidation in the presence of 10-propyl sulfonic acid phenoazine
Rūta Ivanec-Gorania, Juozas Kulyš, Irina Bachmatova, Liucija Marcinkevičienė and Rolandas Meškys

140 Spatial heterogeneity of lake eutrophication caused by physiogeographic conditions: An analysis of 143 lakes in China
Jingtao Ding, Jinling Cao, Qigong Xu, Beidou Xi, Jing Su, Rutai Gao, Shouliang Huo and Hongliang Liu

148 Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO₃
Chun-Hua Li, Yuk-Shan Wong, Hong-Yuan Wang and Nora Fung-Yee Tam

157 Achieving nitritation at low temperatures using free ammonia inhibition on Nitrobacter and real-time control in an SBR treating landfill leachate
Hongwei Sun, Yongzhen Peng, Shuying Wang and Juan Ma

164 Kinetics of Solvent Blue and Reactive Yellow removal using microwave radiation in combination with nanoscale zero-valent iron
Yanpeng Mao, Zhenqian Xi, Wenlong Wang, Chunyuan Ma and Qinyan Yue

173 Environmental impacts of a large-scale incinerator with mixed MSW of high water content from a LCA perspective
Ziyang Lou, Bernd Bilitewski, Nanwen Zhu, Xiaoli Chai, Bing Li and Youcai Zhao

180 Quantitative structure–biodegradability relationships for biokinetic parameter of polycyclic aromatic hydrocarbons
Peng Xu, Wencheng Ma, Hongjun Han, Shengyong Jia and Baolin Hou

191 Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants
Christof Lanzerstorfer

198 Assessment of the sources and transformations of nitrogen in a plain river network region using a stable isotope approach
Jingtao Ding, Beidou Xi, Qigong Xu, Jing Su, Shouliang Huo, Hongliang Liu, Yijun Yu and Yanbo Zhang

207 The performance of a combined nitritation-anammox reactor treating anaerobic digestion supernatant under various C/N ratios
Jian Zhao, Jiane Zuo, Jia Lin and Peng Li

215 Coagulation behavior and floc properties of compound biofloculant-polyaluminum chloride dual-coagulants and polymeric aluminum in low temperature surface water treatment
Xin Huang, Shenglei Sun, Baoyu Gao, Qinyan Yue, Yan Wang and Qian Li

223 Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure
Yang Zhang, Lin Zhu, Ya Zhou and Jimiao Chen

231 Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil
Mohammad Anwar Hossain, Golum Kibria Muhammad Mustafizur Rahman, Mohammad Mizanur Rahman, Abul Hossain Molla, Mohammad Mostafizur Rahman and Mohammad Khabir Uddin

241 Molecular characterization of microbial communities in bioaerosols of a coal mine by 454 pyrosequencing and real-time PCR
Min Wei, Zhisheng Yu and Hongxun Zhang

252 Risk assessment of Giardia from a full scale MBR sewage treatment plant caused by membrane integrity failure
Yu Zhang, Zhimin Chen, Wei An, Shumin Xiao, Hongying Yuan, Dongqing Zhang and Min Yang

186 Serious BTEX pollution in rural area of the North China Plain during winter season
Kankan Liu, Chenglong Zhang, Ye Cheng, Chengtang Liu, Hongxing Zhang, Gen Zhang, Xu Sun and Yujing Mu
The performance of a combined nitritation–anammox reactor treating anaerobic digestion supernatant under various C/N ratios

Jian Zhao, Jiane Zuo⁎, Jia Lin, Peng Li
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
E-mail: zhao-j07@mails.tsinghua.edu.cn

ARTICLE INFO
Article history:
Received 17 May 2014
Revised 13 August 2014
Accepted 15 August 2014
Available online 29 January 2015

Keywords:
Combined nitritation–anammox
Anaerobic digestion supernatant
C/N ratios
Volatile fatty acids

ABSTRACT
A combined nitritation–anammox reactor was developed to treat the digestion supernatant under various C/N ratios. Due to the difficulties for heterotroph to utilize the refractory organics, the reactor presented relatively stable performance with increasing supernatant addition. Nevertheless, the adverse effects of supernatant would accumulate during the long-term operation and thus weakened the activity and shock resistance of microbes, which further led to the gradual decrease of reactor performance after 92 days’ operation. Under this circumstance, supernatant with volatile fatty acids (VFAs) residuals was further introduced into the reactor to investigate the performance of combined nitritation–anammox process with VFA addition. With the appearance of VFAs, the nitrogen removal performance gradually restored and the reactor finally achieved stable and efficient performance with C/N ratio of 0.35. The VFA residuals within 150 mg/L in the supernatant served as the extra electron donors and stimulated the heterotrophic denitrification process, which was vital for the enhancement of reactor. The nitrogen removal rate and total nitrogen removal efficiency reached 0.49 kg N/(m³·day) and 88.8% after 140 days’ operation, respectively. The combined nitritation–anammox reactor was proved suitable to treat digestion supernatant.

© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
Published by Elsevier B.V.

Introduction
In recent years, serious eutrophication which resulted from the discharge of excessive nitrogen with the accelerating industrialization and urbanization, has attracted considerable concerns in water environmental protection. The conventional technology for nitrogen removal, nitrification followed by denitrification process, required plenty of energy consumptions and organics addition (Münch et al., 1996; Ruiz et al., 2006). This technology would be especially costly and difficult in treating wastewater with high concentration of ammonia while relatively low C/N ratio. For these reasons, the anaerobic ammonia oxidation (anammox) based technologies have been considered as the promising alternatives for the traditional technology due to its being cost-saving and energy-efficient.

Among the anammox based technologies, the combined nitritation–anammox, which integrated the nitritation and anammox in one single reactor (Sliekers et al., 2002), presented remarkable advantages in operation (Joss et al., 2011) and was employed in more than 88% of full-scale application practically (Lackner et al., 2014). During this process, ammonia was partially oxidized to nitrite firstly, then the anammox would combine the formed nitrite and ammonia to dinitrogen gas with a small amount of nitrate production. In contrast to the traditional process, this autotrophic process did not require organic carbon addition, while the presentation of organics was reported to be

⁎ Corresponding author. E-mail: jiane.zuo@tsinghua.edu.cn (Jiane Zuo).

http://dx.doi.org/10.1016/j.jes.2014.08.022
1001-0742/© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
inhibitory for the anammox process (Chamchoi et al., 2008; Tang et al., 2010).

However, in practical application, the raw wastewater treated by combined nitritation–anammox mostly contained a certain concentration of organics besides nitrogen compounds. Previous researches have focused on the influences of organic concentration and C/N ratio on the performance of anammox process, and synthetic wastewater was mostly engaged for experiment (Tang et al., 2013, 2014). Compared to the synthetic wastewater, the raw wastewater (anaerobic digestion supernatant was researched in this study) mostly contained refractory organics (Graja and Wilderer, 2001). In addition, in spite of the relatively low C/N ratio which was insufficient for denitrification process, the digestion supernatant still contained high concentration of organics due to the high level of ammonia. With the autotrophic combined nitritation–anammox process, these organics could be reserved while the ammonia was eliminated and the treated supernatant with organics residual could be recycled to the digester for further digestion, which possibly improved the digestion performance. Moreover, compared to the synthetic wastewater, the fluctuations in anaerobic digester might lead to variations in the compositions of supernatant (e.g., volatile fatty acids residuals), which might impact the subsequent nitrogen removal process significantly. However, the performance of combined nitritation–anammox process treating raw wastewater under various C/N ratios and the long-term effects of raw wastewater addition remained little understood.

In this study, a combined nitritation–anammox reactor was established by feeding synthetic wastewater and then operated under various C/N ratios with supernatant addition for 140 days. The performance of this autotrophic process under different C/N ratios and the long-term effects of supernatant addition were studied. Moreover, the volatile fatty acids (VFAs) containing supernatant which resulted from the fluctuations of anaerobic digester were added into the reactor for the investigation of reactor performance. The results revealed that the long-term addition of supernatant did alter the reactor performance significantly while the nitritation–anammox process still presented considerable capacity to accommodate the raw wastewater.

1. Materials and methods

1.1. Reactor configuration and operation condition

An SBR (sequencing batch reactor) with a working volume of 5 L was used for the combined nitritation–anammox process. The reactor was made by polymethyl methacrylate with an inner diameter of 10 cm, as depicted in Fig. 1a. Sponges were used as the biomass carrier and the packing rate was 40% (V/V). The temperature was kept at 32 ± 1°C during the operation by a thermostat water jacket. The exchange volume ratio of the SBR was kept at 40%. Compressed air was supplied via a diffuser at the bottom of the reactor to keep the dissolved oxygen (DO) around 1.0–1.5 mg/L. The SBR was operated in the cycles consisted of 4 phases: feeding, reaction, settling and decanting. The duration of each phase lasted for 10, 420, 20 and 10 min throughout the experiment, respectively. The pH values ranged from 7.3 to 7.9 by adding NaHCO3 and 1 mol/L HCl.

1.2. Inoculum and influent condition

The reactor was seeded with 5000 mg anammox sludge (in wet weight) from an anammox reactor in the same laboratory and 6000 mg nitrification seed sludge (in wet weight) which was taken from the aeration tank of a municipal wastewater treatment plant in Beijing, China. With the oxygen supplement on the start-up of the combined nitritation–anammox process, the anammox sludge was prone to be inhibited by the oxygen since the biofilm was not formed and the anammox sludge presented flocculent at the start-up stage. Therefore, the amount of nitrification seed sludge was determined to be higher than the anammox sludge to some extent, which aimed to consume the oxygen and cover the anammox sludge and thus protect the anammox process.

During the start-up stage, the SBR was fed with synthetic wastewater: NH4HCO3 150–400 mg N/L, KH2PO4 15 mg P/L, CaCl2 300 mg/L, MgSO4·7H2O 200 mg/L, NaHCO3 400–800 mg/L, and trace element solutions I and II 1.25 mL/L (Molinuiev et al., 2009). After 47 days’ start-up stage, the raw supernatant from an anaerobic digester treating food waste and fruit/vegetable waste was added into the influent to supply 20–100% of the ammonia in the influent, while the total ammonia concentration in the influent was kept relatively stable around 400 mg/L (to achieve this, the supernatant was diluted and added into the influent to obtain specific C/N ratio and the shortage in ammonia was supplemented by
2. Results and discussions

The operation of the reactor could be divided into 6 phases according to the different dosages of supernatant: the start-up phase (P0), phases P1 to P5 in which various dosages of supernatant were added into the influent resulted in various C/N ratios (from 0.13 to 0.35, and the C/N ratio of raw supernatant is 0.35). The variations of the nitrogen compounds and organic matters of reactor through various phases are revealed in Fig. 2. For the comparative study between different phases, the last 7 days of each phase were considered as the steady status, thus the average values of the reactor performance in these days were determined as the representative. The results are summarized in Table 1.

1.3. Analytical methods

The influent and effluent were collected on a daily basis and were analyzed immediately for concentrations of ammonia, nitrite, nitrate and TOC according to the standard methods (APHA, 2005). The VFAs, volatile organic compounds (VOCs), heavy metals and soluble chemical oxygen demand (sCOD) of supernatant were determined according to APHA (2005) Standard Methods. The DO, temperature and pH were measured using Hach HQ30d (Hach Inc., Loveland, Colorado, USA).

1.3.1. Microbial community analysis

GeoChip 4.0 was engaged for the microbial community analysis in this study. GeoChip is a high-throughput metagenomic technology, and has been proven to be a powerful tool for functional profiling of microbial community (Liu et al., 2010; He et al., 2012). GeoChip 4.0 contained a variety of genes for major microbial functional genes, such as nitrogen cycling, carbon cycling, metal resistance, organic remediation and stress.

The sludge samples were collected after reactor start-up and at the end of the whole experiment. DNA extraction, purification, labeling and hybridization were subsequently carried out for GeoChip analysis as the methods described previously (Yang et al., 2013a; Lu et al., 2012). For the data processing, spots with signal to noise ratio (SNR) <2, thermophile >5, signal intensity <1000 were removed. Data normalization was based on logarithm transform, calculating relative abundance in each sample, then scaled up by average (Mean Ratio). Spots with more than 1/3 of the gene spots were considered positive. For the dissimilarity test of Adonis, Bray-Curtis distance was used to calculate the dissimilarity distance matrices from GeoChip data. The data analyses were conducted by the vegan package in R 2.15.0 (Zhang et al., 2013a) and on the website (http://ieg.ou.edu/).

2.1. Start-up phase (P0)

The reactor showed the capacity of nitrogen removal on the inoculation immediately. Ammonia removal was observed and a small quantity of nitrate accumulation was found in the first 3 days. After 37 days’ operation, the ammonia in the influent increase to 389.5 mg/L, and the average concentrations of ammonia, nitrite and nitrate in the effluent were 20.5, 0.3 and 56.0 mg/L, respectively. The nitrogen loading rate (NLR) and corresponding nitrogen removal rate (NRR) were further increased to 0.50 and 0.41 kg N/(m³-day) on day 43. The reactor showed stable ammonia removal efficiency of 95% and total nitrogen (TN) removal efficiency of 82%, indicated that a quick start-up of combined nitrification–anammox process was achieved.

The rapid start-up of the combined nitrification–anammox process could be attributed to the highly activated inoculums and appropriate operation conditions. Compared to previous publications (Slikers et al., 2002; Zhang et al., 2013b), both the anammox and nitrification seed sludge were applied to inoculate the reactor, which resulted in the nitrogen removal at the beginning of inoculation. The start-up process was further accelerated by the subsequent operation which restricted the parameters (DO, pH and temperature) within the appropriate range (Chang et al., 2013) and thus promoted the growth of the microorganisms and the combination of anammox and nitrification processes, which resulted in rapid start-up of reactor.

2.2. Stable operation (P1, P2 and P3)

Achieving the successful start-up of the combined nitrification–anammox after 47 days’ operation, the raw digestion supernatant was gradually added into the influent within a series of dosages (contributed 20% to 100% of the ammonia in the influent from P1 to P5) to investigate the performance of combined nitrification–anammox reactor treating raw supernatant under various C/N ratios.

The operation was initiated with a small amount of raw supernatant addition in phase P1 (days 48–65). The addition of supernatant introduced various compounds companied with it mainly consisted of ammonia and organic carbons. For the comparative study between different phases, the ammonia in the influent was kept around 400 mg/L throughout the operation thus the corresponding NLR was steady around 0.5 kg N/(m³-day). Meanwhile, as the result of supernatant addition, the average TOC concentration in the influent varied accordingly, resulted in different C/N ratios in each phase (0.13–0.35 throughout the operation). In phase P1, the TOC in the influent reached 53.52 mg/L as the result of supernatant addition, which indicated the C/N ratio of 0.13. Nevertheless, in spite of the addition of supernatant in P1, the combined nitrification–anammox reactor presented stable and efficient nitrogen removal performance with NRR of 0.43 kg N/(m³-day) and TN removal efficiency of 83.69% (Table 1). Furthermore, the TOC in the effluent kept relatively stable compared to the influent, which indicated that there was no significant growth of heterotrophic bacteria. This could be attributed to the relatively low concentration of TOC and the organic matters in the supernatant mainly consisted of refractory ones (Graja and Wilderer, 2001). Under this circumstance, the
heterotrophic bacteria could hardly utilize these organics and out-compete in a stable autotrophic reactor (Wang et al., 2012), which resulted in the suppression of denitrification and the stability of combined nitritation–anammox process.

Subsequently, the addition of raw supernatant was increased in phase P2 (days 66–92) and the corresponding TOC and C/N ratio in the influent increased to 87.04 mg/L and 0.22, respectively (Table 1). The reactor presented decrease in nitrogen removal performance on the elevation of supernatant addition. With the operation conditions (e.g., ammonia in the influent, DO and pH) similar to previous phases, the TN removal efficiency decreased significantly while excess nitrate was produced, which indicated that the suppression of anammox process thus part of nitrite was converted by nitrite oxidation process. Nevertheless, along with the continuous operation, the NRR of reactor gradually restored and recovered the similar level in phase P1 after 15 days’ operation (Fig. 2). This indicated that the TOC from the supernatant of 87.04 mg/L and C/N ratio of 0.22 did not affect the stability of reactor performance significantly. In the preliminary period

![Fig. 2 – Performance of the combined nitritation-anammox reactor throughout the operation. (a) Profiles of the influent total nitrogen, effluent nitrogen compounds and total nitrogen removal efficiency. (b) Variations of the TOC in the influent and effluent.](image)

Table 1 – Performance of combined nitritation-anammox reactor during various phases.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Inf. TN (mg/L)</th>
<th>Inf. TOC (mg/L)</th>
<th>Variation of TOC</th>
<th>C/N</th>
<th>NLR (kg N/(m³·day))</th>
<th>NRR (kg N/(m³·day))</th>
<th>TN removal efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>398.93</td>
<td>4.81</td>
<td>−0.97</td>
<td>0.01</td>
<td>0.50</td>
<td>0.39</td>
<td>77.88</td>
</tr>
<tr>
<td>P1</td>
<td>411.89</td>
<td>53.52</td>
<td>+2.50</td>
<td>0.13</td>
<td>0.52</td>
<td>0.43</td>
<td>83.69</td>
</tr>
<tr>
<td>P2</td>
<td>396.25</td>
<td>87.04</td>
<td>+8.39</td>
<td>0.22</td>
<td>0.50</td>
<td>0.43</td>
<td>85.10</td>
</tr>
<tr>
<td>P3</td>
<td>408.25</td>
<td>62.52</td>
<td>−6.94</td>
<td>0.15</td>
<td>0.52</td>
<td>0.42</td>
<td>88.85</td>
</tr>
<tr>
<td>P4</td>
<td>409.56</td>
<td>62.52</td>
<td>+23.83</td>
<td>0.22</td>
<td>0.51</td>
<td>0.35</td>
<td>68.62</td>
</tr>
<tr>
<td>P5</td>
<td>428.30</td>
<td>150.12</td>
<td>−57.80</td>
<td>0.35</td>
<td>0.55</td>
<td>0.49</td>
<td>88.85</td>
</tr>
</tbody>
</table>

* Positive number in the variation of TOC indicated the increase of TOC in the effluent compared to in the influent, and the negative number implied the TOC decreased after reactor treatment; NLR: nitrogen loading rate, NRR: nitrogen removal rate.
for supernatant addition, in spite of the elevated dosage of supernatant, the combined nitritation–anammox could still resist and gradually acclimated after a period of operation. Due to the fluctuations of reactor performance during P2 operation, the dosage of raw supernatant decreased in P3 (days 93–110), which resulted in the TOC and C/N ratio in the influent of 62.52 mg/L and 0.15, respectively (Table 1). Due to the reduction in supernatant addition, the reactor maintained stable and efficient nitrogen removal performance with NRR and TN removal efficiency of 0.42 g N/(m³·day) and 82.59%, respectively.

Throughout the operation from P1 to P3 with raw supernatant addition, the reactor showed relatively stable and efficient nitrogen removal performance with C/N ratio under 0.22. The combined nitritation–anammox revealed considerable resistance for supernatant addition. Besides, TOC removal could barely be detected even if mild increase in TOC could be occasionally monitored. The relative stability in TOC indicated the intensive suppression of heterotrophic bacteria due to the insufficiency of biodegradable organics. In contrast, during the metabolic process, the microorganisms would release extracellular polymeric substances or soluble microbial products (Xie et al., 2013; Ni et al., 2012), which resulted in the mild increase of TOC in the effluent.

2.3. Supernatant inhibition (P4)

In consideration of the stable performance along the operation during P1, P2 and P3 with supernatant addition, the dosage was elevated again in phase P4 (days 110–124) to similar level compared to phase P2 (the TOC and C/N ratio in the influent in P4 reached 89.74 mg/L and 0.22, respectively). Surprisingly, the reactor revealed dramatic reduction in nitrogen removal performance (Fig. 2). The NRR continued to decrease and was reduced to 0.35 kg N/(m³·day) on day 120, meanwhile the TN removal efficiency decreased to 68.62% (the NRR decreased by 16.9% and the TN removal efficiency decreased by 14.0% compared to in P3). Moreover, the TOC in the effluent continued to increase and further achieved 137.3 mg/L on day 124 (increased by 42.7 mg/L compared to in the influent).

The dramatic reduction in ammonia and TN removal performance indicated the decrease in nitritation and anammox activity. In addition, compared to the situation in P2, the effluent TOC in P4 continued to increase and exceeded the influent TOC. The TOC in the effluent finally achieved the highest level ever detected throughout the whole experiment at the end of P4, and reached 140 mg/L, which was 42.7 mg/L higher than that in the influent. The continuous increase of TOC in the effluent revealed the intensive hydrolysis of microorganisms, which further confirmed the existence of severe inhibition. Considering the similar influent condition in P2 and P4, the significant differences in reactor performance could be attributed to the long-term operation, during which the inhibition impacts of supernatant gradually accumulated and presented significantly when the reactor met shock elevation in supernatant addition. The adverse effects of supernatant firstly appeared at the beginning of P2 (18 days after initial supernatant addition on day 48), and the microorganisms presented considerable adaptive capacity at that time and the reactor restored to the effective operation rapidly. However, for phase P4, through 110 days’ operation in which 63 days are with supernatant addition, the adverse effects of supernatant gradually accumulated and further deteriorated the shock resistance and restorability of the combined nitritation–anammox process, which resulted in the dramatic decrease of reactor performance.

The adverse effects could be resulted from the various compounds companied with supernatant. Besides the highly concentrated ammonia and organic carbons, heavy metal (Cu = 2.58 mg/L) and toxic organics (CCl₄ = 40.68 μg/L, p-isopropyltoluene = 124.19 μg/L) in trace amount were also detected in the supernatant, which might mainly result from the residual of pesticides in fruit/vegetable waste. These compounds were proved to be inhibitory for the nitritation–anammox process potentially in previous research (Jin et al., 2012; Yang et al., 2013b). Therefore, for the treatment of raw supernatant by combined nitritation–anammox process, the long-term impacts of inhibitors in trace amounts (e.g., heavy metals and toxic organics) should be also taken into consideration more than the nitrogen and carbon compounds. The adverse effects of supernatant tended to accumulate during the long-term operation and gradually reduce the shock resistance of microorganisms. This was also in accordance with the research conducted by Tang et al. (2011, 2014) who suggested adding the anammox granules periodically to resist the long-term adverse effects caused by antibiotics and high-strength organics.

2.4. VFAs addition (P5)

Due to the fluctuations in the performance of anaerobic digestion, VFAs might gradually accumulate and present in the supernatant. Compared to the TOC detected in phases P1 to P4 which mainly consisted of refractory carbons, VFAs were highly biodegradable and tended to impact the combined nitritation–anammox process differently. For this reason, the performance of combined nitritation–anammox reactor with supernatant addition, which contained VFA residuals, was further investigated.

The addition of raw supernatant was continued to be maintained in P5. Different from the previous phases, the supernatant in P5 was derived from the anaerobic digester during fluctuation period thus VFAs around 300 mg/L could be detected. The supernatant was diluted 2 times in P5 to serve as the influent directly (150 mg/L VFAs in the influent), thus the supernatant contributed 100% of ammonia in the influent and the C/N ratio was identical to that of the original supernatant. In addition, due to the introduction of VFAs, the TOC and C/N ratios in the influent in P5 were increased to 150.12 mg/L and 0.35, respectively. Unexpectedly, rather than suppression, the reactor revealed excellent performance for nitrogen removal with VFA addition (Fig. 2). The NRR and TN removal efficiency gradually recovered from the depression in P4 and continued to increase along the operation. The NRR and TN removal efficiency was increased to 0.49 kg N/(m³·day) and 88.85% at the end of P5 on day 140, the highest values obtained during the whole experiment. Notably, different from the previous phases, considerable elimination of TOC was observed during the phase P5, which indicated the existence of intensive heterotrophic denitrification with VFAs addition.
Because of the shortage in sufficient biodegradable organics from P0 to P4, the reactor didn’t reveal considerable denitrification activity and the heterotrophic denitrification biomass in nitrification seed sludge could hardly out-compete the anammox bacteria. Nevertheless, due to the introduction of biodegradable organics (VFAs) in P5, denitrification process gradually recovered and coexisted with nitrification and anammox processes. Under this circumstance, this reactor was developed into a nitritation–anammox–denitrification system and Chen et al. (2009) named it SNAD (simultaneous partial nitrification, anammox and denitrification) process. For the detailed analysis of the nitrogen removal performance in phase P5, model calculation based on stoichiometric equations was carried out to figure out the nitrogen removal contributed by anammox or denitrification approaches. The procedures for model calculation were performed essentially as described previously (Wang et al., 2010). In the model calculation, nitrification, anammox and denitrification were assumed as the major reactions involved in nitrogen transformation. Based on the stoichiometric equations of these reactions and the variations of ammonia, nitrite, nitrate and COD, the quantity of nitrogen consumed by ammonia oxidation bacteria, nitrite oxidation bacteria, anammox and denitrification could be determined. As the results showed in Fig. 3, in spite of the utilization of partial TOC (mainly VFAs) in the last phase, only 14.4% of TN was removed through denitrification process due to the limited biodegradable organics, while the majority of TN removal was attributed to the anammox approach. The combined nitritation–anammox was still the predominant reaction for the nitrogen removal.

Besides the nitrogen removed by denitrification, the nitritation–anammox process contributed 85.6% of the TN removal, meaning the NRR of 0.42 kg N/(m³·day), which was still 20% higher than in P4. However, the TOC and C/N ratio in P5 revealed significant increase compared to P4. Moreover, the inhibition caused by supernatant would be further accumulated through the continuous operation. For these reasons, the recovery of reactor performance in P5 rather than inhibition indicated that the VFA addition might promote the combine nitritation–anammox process besides the denitrification within appropriate concentration range (150 mg/L in this study). VFAs were reported to be the substrate of anammox bacteria and served as the electron donors for nitrate reduction during the dissimilatory nitrate reduction to ammonia (DNRA) process (Kartal et al., 2007). It is reported by previous researches that the addition of VFAs could enhanced the nitrogen removal performance of anammox process and improve the TN removal efficiency under appropriate conditions (Winkler et al., 2012a,b). Therefore, the VFAs remained in the supernatant (within 150 mg/L) might serve as the extra electron donors for anammox bacteria through DNRA process thus stimulating the anammox reaction, which resulted in the promotion of the combined nitritation–anammox reactor and enhanced the performance for nitrogen removal.

Throughout the operation, the combined nitritation–anammox reactor received the increasing dosage of raw supernatant while kept relatively stable. For the comparative study between different phases, the ammonia in the influent was kept around 400 mg/L thus the supernatant was still diluted 2 times in the last phase (the average ammonia concentration of raw supernatant was 813 ± 59 mg/L). Under this circumstance, the C/N ratio in the influent was the same to the raw supernatant. The reactor still revealed efficient nitrogen removal performance. In addition, with VFA residuals in the supernatant, the reactor could gradually restore from the suppression of supernatant and further obtained the highest NRR throughout the whole experiment. These indicated that the combined nitritation–anammox was suitable for the treatment of supernatant. For further research to treat the supernatant without dilution, merely the exchange volume ratio should be reduced thus the SBR could receive the supernatant directly (for the treatment of supernatant which was diluted 2 times, the exchange volume ratio was 40% in this study, and it was equivalent to the situation that SBR received supernatant directly by reducing the exchange volume ratio to 20%).

2.5. Microbial community analysis

GeoChip 4.0 was engaged to present an overview of the microbial community structure of the combined nitritation–anammox reactor treating complex supernatant, and figure out the influences by supernatant addition. Detrended correspondence analysis (DCA) was conducted to examine whether the structure of microbial community changed significantly by supernatant addition. As shown in Fig. 4, samples were grouped by phases and samples from different phases were well separated from each other. In addition, the dissimilarity tests also showed that microbial community structures were significantly different between P0 and P5 (p < 0.05). The DCA and dissimilarity results revealed that the long-term addition of digestion supernatant altered the microbial community structure of this reactor significantly.

Subsequently, Shannon and Simpson Indices were calculated to indicate the functional gene diversity, while the gene number was presented to figure out the variation in gene abundance (Table 2). The results showed that the gene diversity and gene abundance were both decreased significantly in P5 compared to in P0 (p < 0.05) even after the restoration in phase 5, which indicated that the supernatant shaped the whole microbial community mainly by suppression.

3. Conclusions

A combined nitritation–anammox reactor was established to treat the digestion supernatant under various C/N ratios. The supernatant which mainly consisted of refractory organics suppressed the growth of heterotroph which thus resulted in relative stability of combined nitritation–anammox process. Nevertheless, the adverse effects of supernatant would gradually accumulate during long-term operation and led to the decrease of reactor performance. The VFA residuals within 150 mg/L in the supernatant served as the extra electron donors and stimulated the heterotrophic denitrification process, which thus restored and enhanced the nitritation–anammox reactor rather than inhibition. The combined nitritation–anammox reactor was proved to be suitable to treat the anaerobic digestion supernatant.
This research was supported by the Mega-Projects of Science Research for Water Environment Improvement (No. 2012ZX07205-001).

Table 2 – Comparison of detected genes and diversity indices by GeoChip 4.0.

<table>
<thead>
<tr>
<th></th>
<th>Phase P0</th>
<th>Phase P5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total numbers of genes detected</td>
<td>22911</td>
<td>19910</td>
</tr>
<tr>
<td>Shannon index</td>
<td>9.94</td>
<td>9.78</td>
</tr>
<tr>
<td>Simpson index</td>
<td>20638</td>
<td>17588</td>
</tr>
</tbody>
</table>

Fig. 3 – Model calculation of the combined nitritation-anammox reactor based on stoichiometric equations.

Fig. 4 – Detrended correspondence analysis (DCA) of GeoChip data. The values of Axes 1 and 2 represent the percentage of total variations that can be attributed to the corresponding axis.

Acknowledgment

This research was supported by the Mega-Projects of Science Research for Water Environment Improvement (No. 2012ZX07205-001).
REFERENCES

Editorial Board of Journal of Environmental Sciences

Editor-in-Chief
- X. Chris Le
 University of Alberta, Canada

Associate Editors-in-Chief
- Jiuhui Qu
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- Shu Tao
 Peking University, China
- Nigel Bell
 Imperial College London, UK
- Po-Keung Wong
 The Chinese University of Hong Kong, Hong Kong, China

Editorial Board

Aquatic environment
- Baoyu Gao
 Shandong University, China
- Maohong Fan
 University of Wyoming, USA
- Chhipin Huang
 National Chiao Tung University
- Ng Wun Jern
 Nan Yang Environment & Water Research Institute, Singapore
- Zijian Wang
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- Daqiang Yin
 Tongji University, China
- Peijun Li
 Institute of Applied Ecology, Chinese Academy of Sciences, China
- Xuejun Wang
 Peking University, China
- Jinnian Chen
 Fudan University, China
- Min Shao
 Peking University, China
- Yuesi Wang
 University of Wisconsin-Madison, USA
- Jinmin Chen
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- Abdelwahid Mellouki
 France
- Xiaohong Zhu
 Zhejiang University, China
- Xin Yang
 University of Cambridge, UK
- Hong He
 Shanghai Jiao Tong University, China
- Michael Schloter
 Germany
- Yujing Mu
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- Min Yang
 The Ohio State University, USA
- Mei Huang
 France
- Zhengang Mao
 Zhejiang University, China

Terrestrial environment
- Christopher Anderson
 Massey University, New Zealand
- Taojun Cai
 Nanjing Normal University, China
- Xinhua Feng
 Institute of Geochemistry, Chinese Academy of Sciences, China
- Hongqing Hu
 Huazhong Agricultural University, China
- Xinfa Lam
 The Chinese University of Hong Kong
- Erwin Klumpp
 Research Centre Juelich, Agrosphere Institute, Germany
- Yong Cai
 Florida International University, USA
- Henner Holbert
 RWTH Aachen University, Germany
- Jae-Seong Lee
 Sungkyunkwan University, South Korea
- Zixuan Wang
 National Natural Science Foundation of China
- Zongwei Cai
 Hong Kong Baptist University, Hong Kong, China
- Qingcai Feng
 Institute of Applied Ecology, Chinese Academy of Sciences, China
- Bojan Sedmak
 University of Ljubljana, Slovenia
- Lirong Song
 Institute of Hydrobiology, Chinese Academy of Sciences, China
- Minghui Zhong
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Environmental catalysis and materials
- Daqiang Yin
 Tongji University, China
- Min Yang
 Zhejiang University, China
- Xuejun Wang
 Peking University, China
- Jinmin Chen
 Fudan University, China
- Min Shao
 Peking University, China
- Yuesi Wang
 University of Wisconsin-Madison, USA
- Xin Yang
 University of Cambridge, UK
- Hong He
 Shanghai Jiao Tong University, China
- Michael Schloter
 Germany
- Yujing Mu
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- Min Shao
 Peking University, China
- Yuesi Wang
 University of Wisconsin-Madison, USA
- Jinmin Chen
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- Zhengang Mao
 Zhejiang University, China

Environmental biology
- Xinhua Feng
 Institute of Geochemistry, Chinese Academy of Sciences, China
- Hongqing Hu
 Huazhong Agricultural University, China
- Xinfa Lam
 The Chinese University of Hong Kong
- Erwin Klumpp
 Research Centre Juelich, Agrosphere Institute, Germany
- Yong Cai
 Florida International University, USA
- Henner Holbert
 RWTH Aachen University, Germany
- Jae-Seong Lee
 Sungkyunkwan University, South Korea
- Zixuan Wang
 National Natural Science Foundation of China
- Zongwei Cai
 Hong Kong Baptist University, Hong Kong, China
- Qingcai Feng
 Institute of Applied Ecology, Chinese Academy of Sciences, China
- Bojan Sedmak
 University of Ljubljana, Slovenia
- Lirong Song
 Institute of Hydrobiology, Chinese Academy of Sciences, China
- Minghui Zhong
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Environmental toxicology and health
- Daqiang Yin
 Tongji University, China
- Min Yang
 Zhejiang University, China
- Xuejun Wang
 Peking University, China
- Jinmin Chen
 Fudan University, China
- Min Shao
 Peking University, China
- Yuesi Wang
 University of Wisconsin-Madison, USA
- Xin Yang
 University of Cambridge, UK
- Hong He
 Shanghai Jiao Tong University, China
- Michael Schloter
 Germany
- Yujing Mu
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- Min Shao
 Peking University, China
- Yuesi Wang
 University of Wisconsin-Madison, USA
- Jinmin Chen
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- Zhengang Mao
 Zhejiang University, China

Environmental analysis and method
- Daqiang Yin
 Tongji University, China
- Min Yang
 Zhejiang University, China
- Xuejun Wang
 Peking University, China
- Jinmin Chen
 Fudan University, China
- Ning Su
 Peking University, China
- Yong Cai
 Florida International University, USA
- Henner Holbert
 RWTH Aachen University, Germany
- Yuesi Wang
 University of Wisconsin-Madison, USA
- Xin Yang
 University of Cambridge, UK
- Hong He
 Shanghai Jiao Tong University, China
- Michael Schloter
 Germany
- Yujing Mu
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- Min Shao
 Peking University, China
- Yuesi Wang
 University of Wisconsin-Madison, USA
- Junhua Li
 Tsinghua University, China

Municipal solid waste and green chemistry
- Daqiang Yin
 Tongji University, China
- Min Yang
 Zhejiang University, China
- Xuejun Wang
 Peking University, China
- Jinmin Chen
 Fudan University, China
- Ning Su
 Peking University, China
- Yong Cai
 Florida International University, USA
- Henner Holbert
 RWTH Aachen University, Germany
- Yuesi Wang
 University of Wisconsin-Madison, USA
- Xin Yang
 University of Cambridge, UK
- Hong He
 Shanghai Jiao Tong University, China

Environmental office staff
- Managing editor
 Qingcai Feng
- Editors
 Zixuan Wang Suqin Liu Kuo Liu Zhengang Mao
- English editor
 Catherine Rice (USA)

Copyright© Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.