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Powdered activated carbon (PAC) adsorption of two fishy odorants, trans,trans-2,4-heptadienal
(HDE) and trans,trans-2,4-decadienal (DDE), was investigated. Both the pseudo first-order and
the pseudo second-order kineticmodels well described the kinetics curves, and DDEwasmore
readily removed by PAC. In isotherm tests, both Freundlich andModified Freundlich isotherms
fitted the experimental data well. PAC exhibited a higher adsorption capacity for DDE than
for HDE, which could be ascribed to the difference in their hydrophobicity. The calculated
thermodynamic parameters (ΔG0, ΔH0, and ΔS0) indicated an exothermic and spontaneous
adsorption process. PAC dosage, pH, and natural organicmatter (NOM) presencewere found to
influence the adsorption process. With increasing PAC dosage, the pseudo first-order and
pseudo second-order rate constants both increased. The value of pHhad little influence onHDE
or DDEmolecules but altered the surface charge of PAC, and themaximumadsorption capacity
occurred at pH 9. The presence of NOM, especially the fractionwithmolecularweight less than
1 k Dalton, hindered the adsorption. The study showed that preloaded NOM impaired the
adsorption capacity of HDE or DDE more severely than simultaneously fed NOM did.
© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

The presence of taste and odor (T&O) compounds in drinking
water is a common and recurrent problem for many utilities,
since palatability is often consumers' only direct indication of
the safety of drinking water (Watson, 2004; Satchwill et al.,
2007), and a negative perception can in many cases spark
mistrust toward the industry (Zhang et al., 2010, 2011). In the
last few decades, T&O episodes have been reported in many
places, such as the Glenmore Reservoir in Canada (Watson et
al., 2001), Lake Winnebago in the United States (Young et al.,
1999), Lake Zurich and Lake Greifensee in Switzerland (Peter et
al., 2009), and Taihu Lake in China (Yang et al., 2008). Thus,
tsinghua.edu.cn (Chao Ch

o-Environmental Science
it is of great importance to develop effective measures to
mitigate the off-flavor in drinking water.

Ever since geosmin was found in drinking water (Gerber
and Lechevalier, 1965), many odorous chemicals were con-
firmed to be sources of T&O events (Wnorowski, 1992; Suffet
et al., 1996, 1999). Among those odorants, a major part could
be attributed to microbial metabolism (Suffet et al., 1999;
Hockelmann and Jüttner, 2005). Although the two prevalent
earthy–musty odorants i.e., geosmin and 2-methylisoborneol
have been extensively discussed, research on other off-flavor
compounds has been relatively scarce.

Trans,trans-2,4-heptadienal (HDE, C7H10O) is reported to be an
unsaturated fatty acid derived fromchrysophytes (Yano et al., 1988;
jes
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Watson and Satchwill, 2003). It could contribute a severe rancid or
fishy odor to water (Khiari et al., 1995). On the other hand,
trans,trans-2,4-decadienal (DDE, C10H16O) is a lipooxygenase-
mediated cleavage product of diatoms (Miralto et al., 1999; Jüttner,
2001) or chrysophytes (Jüttner, 1995). It renders the drinking water
fishy or oily (Watson, 2004). Physical and chemical properties of the
two compounds are as follows:molecularweight are 110.15, 152.23;
boiling points are 177.4 and 244.6°C; logKOW are 2.11 and 3.18, for
HDE and DDE, respectively, while OTC for HDE is 2.5–5 μg/L, and
0.07 μg/L for DDE.

The two odorants have been found in natural water bodies
and a few publications have discussed mitigation methods.
Watson et al. (2001) concluded that chlorination had little
effect on HDE. Jo (2008) found that UV/H2O2 was effective in
eliminating HDE and DDE. However, this advanced oxidation
process is costly and not practical for drinking water
treatment plants. Powdered activated carbon (PAC) adsorp-
tion has been proved to be an effectivemethod in dealing with
various pollutants as well as T&O compounds in water (Kim et
al., 1997; Tan et al., 2008). As far as the authors know, the
application of PAC adsorption to HDE and DDE has not been
previously reported.

In this study, our objective is to investigate the character-
istics and mechanisms of PAC adsorption of HDE and DDE,
including kinetics, equilibria, and thermodynamic studies. In
addition, the effects of PAC dosage, pH, and natural organic
matter (NOM) were also studied.
c.c
n

1. Materials and methods

1.1. Chemicals

HDE (90%) was purchased from Sigma-Aldrich (USA) and DDE
(95%) was obtained from Acros Organics (Belgium). NaCl was
bought from Sigma-Aldrich and heated at 450°C for 4 hr
before use. Stock solutions of HDE and DDE were prepared in
methanol (HPLC-grade, J.T. Baker, Center Valley, PA, USA). All
other solutions were prepared using water from a Milli-Q
ultrapure water purification system.

Propertiesof thePACused (F-400,CalgonCarbonCo.,China)are
asfollows:ashcontent<5.81%,specificarea1087 m2/g,averagepore
size 2.42 nm, pore volume 0.63 mL/g, iodine number 1071 mg/g,
methylene blue adsorption 225 mg/g, the pore size distribution
for <2.0 nm, 2.0–3.0 nm, 3.0–5.0 nm, 5.0–10.0 nm, 10.0–20.0 nm,
and >20.0 nm are 64.34%, 7.77%, 13.06%, 8.60%, 5.76%, and 0.47%,
respectively.Prior touse,PACwasdried for5 hrat105°C.

1.2. Chemical analysis

Concentrations of HDE and DDE were analyzed using liquid
phase chromatography with an ultraviolet detector. The 1260
infinity high performance liquid chromatography system
(Agilent Technologies, Santa Clara, CA, USA) was used for
odorant detection with an Eclipse Plus C-18 column (Agilent
Technologies, Santa Clara, CA, USA). The mobile phase
consisted of 95:5 H2O:acetonitrile for HDE and 100% acetonitrile
for DDE, and the flow rate was 0.5 mL/min. The UV absorbance
peak occurred at 281 nm and 282 nm for HDE and DDE
respectively.
 c.a

In NOM effect experiments, the quantification of off-flavor
compounds was achieved by headspace solid phase micro-
extraction (HS-SPME) coupled with gas chromatography/mass
spectrometry (GC/MS). The GC Sampler 80 (Agilent Technol-
ogies, Santa Clara, CA, USA) was utilized in the automated
HS-SPME process. A 7890A gas chromatograph attached to
a 5975C mass spectrometer (Agilent Technologies, Santa Clara,
CA, USA) was employed to analyze the odorants. The column
used was an HP-5MS 30 m × 0.25 mm × 0.25 μm (Agilent Tech-
nologies, Santa Clara, CA, USA). Divinylbenzene/carboxen/poly-
dimethylsiloxane stableflex (DVB/CAR/PDMS) SPME fiber (Agilent
Technologies, Santa Clara, CA, USA) was used for sample
preconcentration and was conditioned according to manufac-
turer instruction at 270°C for 1 hr. High purity helium, delivered
at a constant flowof 1 mL/min,wasusedas carrier gas. Themass
spectrometer was used in EI mode (70 eV) with 5 min solvent
delay.

1.3. Natural organic matter

Humic acid was purchased from Sigma-Aldrich (USA). A
certain amount of NOM was mixed with ultrapure water for
24 hr and then the solution was filtered through a 0.45 μm
Millipore filter (diameter: 47 mm, Merk Millipore, Billerica,
MA, USA). The NOM solution was then fractionated into six
nominal molecular weight (MW) fractions: <1000, <3000,
<5000, <10000, <30000, and <100000 with ultrafiltration
membranes (material: regenerated cellulose, diameter:
76 mm, Merk Millipore, Billerica, MA, USA). The total
organic carbon (TOC) contents of the fractions were mea-
sured by a TOC-VCPH analyzer (Shimadzu, Kyoto, Japan).

1.4. Determination of point of zero charge of PAC

The determination of point of zero charge (pHpzc) was carried
out using the pH titration method (Órfão et al., 2006). Several
200 mL glass bottles were filled with 0.01 mol/L NaCl
solution. The pH of the solution within each bottle was
adjusted to a value between 2 and 11 by the addition of NaOH
or HCl solution. Then, 0.6 g of PACwas added into each bottle
and the final pH was measured after 48 hr. The pHpzc is
defined as the point where the curve pHfinal vs. pHinitial

crosses the line pHfinal = pHinitial.

1.5. Procedure

All the tests were carried out on a customized shaker in
600 mL glass bottles containing HDE or DDE solution at
298 K. If needed, solution pH was adjusted to the desired
level with phosphate buffer solution, NaOH, or HCl. Since no
significant pH variations were observed during the experi-
ments, the initial pH values were perceived to be constant.
Adsorption reactions were initiated by the addition of a
certain amount of PAC. In kinetics tests, 2 mL samples were
collected at designated time intervals. In isotherm experi-
ments, the adsorption process ran for 48 hr to achieve
equilibrium. All the thermodynamics tests were the same
as the adsorption isotherm tests, except that three addi-
tional temperatures, including 308, 318, and 328 K, were
tested.
jes
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Table 1 – Kinetic and isotherm models used for data analysis.

Models Equations Constants Remarks

Pseudo first-order log qe−qtð Þ ¼ logqe−
k1

2:303 t k1 k1 (min−1) is the pseudo first-order rate constant
Pseudo second-order t

qt
¼ 1

k2q2e
þ 1

qe
t k2 k2 (mg/(μg·min)) is the pseudo second-order rate constant

Elovich qt = a + b log t a, b a (μg/mg) and b are the Elovich model constants
Weber–Morris intraparticle
diffusion

qt ¼ kintt
1
2 kint kint (mg= g�min

1
2

� �
) is the intraparticle diffusion rate constant

Freundlich qe ¼ K f c
1
n
e Kf, 1/n Kf (μg1−(1/n)L1/nmg−1) and n are the Freundlich isotherm

constants, indicating relative adsorption capacity and intensity
of adsorption, respectively

Langmuir qe ¼ bqmce
1þbce

b, qm b (L/μg) is the Langmuir isotherm constant related to free energy of
adsorption, qm (μg/mg) is the Langmuir maximum adsorption capacity

Elovich qe
qm

¼ KEce exp − qe
qm

� �
KE, qm KE (L/μg) is the Elovich isotherm constant, qm (μg/mg) is the Elovich

maximum adsorption capacity
Modified Freundlich qe ¼ K 0

f
ce
D

� � 1
n0 K′f, 1/n′ K′f (μg1−(1/n′)mg(1/n′)−1) and n′ are the Freundlich isotherm constants

Temkin θ ¼ RT
ΔQ ln K0ceð Þ θ, R, T, ΔQ, K0 θ (θ = qe/qm) is the fraction coverage, R (8.314 J/(mol·K)) is the universal

gas constant, T (K) is the temperature, ΔQ (J/mol) is the adsorption
energy variation, K0 (L/μg) is the Temkin isotherm constant
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1.6. Data analysis

In the isotherm study, the adsorption capacity or carbon
loading at equilibrium, i.e., qe (μg/mg) was used for model
fitting, while in kinetic experiments, the adsorption capacity
at time t (min), i.e., qt (μg/mg) was also calculated. The values
of qt and qe can be acquired as follows:

qt ¼
c0−ct
D

ð1Þ

qe ¼
c0−ce
D

ð2Þ

where, c0 (μg/L) is the initial concentration of odorant, ct (μg/L)
is the odorant concentration at time t, ce (μg/L) is the odorant
concentration at equilibrium, and D (mg/L) is the PAC dosage.

The experimental data were fitted using different kinetic
models (pseudo first-order, pseudo second-order, Elovich, and
Weber–Morris intraparticle diffusion models) and equilibrium
models (Freundlich, Langmuir, Elovich, Modified Freundlich, and
Temkin models). Model equations and constants are listed in
Table 1.
c.c
n

2. Results and discussion

2.1. Adsorption kinetics

Theoretically, three steps are involved in the kinetics process
(Lazaridis and Asouhidou, 2003): (1) external mass transfer, i.e.,
the transfer of adsorbate between the bulk fluid and the surface
of adsorbent particles; (2) intraparticle diffusion, which is the
entrance of adsorbate into adsorbent pores and the diffusion in
pores; and (3) mass action at phase boundaries. In physical
adsorption, the last step is very rapid and the process is
controlled by external mass transfer or intraparticle diffusion
(Qiu et al., 2009). Based on these steps, different models have
been put forward to describe or predict adsorption kinetics. The
measured andmodeled adsorption kinetics curves are depicted
in Fig. 1 and their kinetic parameters are summarized in Table 2.

Both the pseudo first-order model and the pseudo second-
order model appeared to well describe the adsorption curves of
 c.a

the two odorants in terms of correlation coefficient (r > 0.980),
and DDE exhibited a higher adsorption rate than HDE. Both two
models assume that the driving force for adsorption is the
difference between the average odorant concentration in solid
phase qt and the equilibrium concentration qe, and the overall
adsorption rate is proportional to either the driving force (as in
the pseudo first-order equation) or the square of the driving force
(as in the pseudo second-order equation). However, the former
mainly simulates rapid adsorption owing to the absence of
adsorbent–adsorbate interactions (Ofomaja et al., 2010) while the
latter generally paints the picture of a more complex, multi-step
process (Qiu et al., 2009). Seen from r values and the curves in
Fig. 1, the adsorptionof the two aldehydeswas characterized by a
speedy process, both concluded within 1 hr. Thus the pseudo
first-order equation was the more suitable model.

The Elovich equation is one of the most useful models
for describing chemisorption (Özacar and Şengil, 2005) and the
constant b is related to the extent of surface coverage and
activation energy for chemisorption. It was obvious that its
predicted kinetic curves in Fig. 1 deviated from the experimental
data, rendering it unacceptable. The Weber–Morris intraparticle
diffusionmodel also didnot fitwell. Thismodel assumes that the
intraparticle diffusion step is the rate-limiting one. The intercept
of the plot indicates the effect of external mass transfer: the
larger the intercept, the greater the contribution of externalmass
transfer in the rate-limiting step (Vadivelan and Kumar, 2005).
The intraparticle diffusionmodel fitting results all ended upwith
considerable intercepts and unsatisfactory r values. This proved
that intraparticle diffusion was not the only factor governing the
adsorption process.

The effect of PAC dosage on adsorption kinetics is shown
in Fig. 2. It is clear that for both odorants, the variation of PAC
dosage greatly altered the adsorption kinetics pattern: with
higher dosage, the equilibriumwas achieved in a shorter time
span and a lower carbon loading was observed. The decrease
in unit adsorption amount with the increase of PAC dosage
was due to the fact that the adsorption sites remained
unsaturated during the adsorption process (Shukla et al.,
2002). The rate constants of the pseudo first-order kinetics
model (k1) and the pseudo second-order kinetics model (k2)
were studied (Fig. 3).
jes
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Fig. 1 – Adsorption kinetic curves of trans,trans-2,4-heptadienal (HDE) and trans,trans-2,4-decadienal (DDE) (powdered
activated carbon dosage = 20 mg/L, c0 = 400 μg/L, pH 7, temperature = 298 K).
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As implied by Fig. 3, when PAC dosage increased from 5 to
25 mg/L, k1 and k2 values for both odorants increased. This can
be attributed to greater surface area and availability of more
adsorption sites with increasing adsorbent dosage (Demirbas et
al., 2008, 2009; Ma et al., 2010; Geethakarthi and Phanikumar,
2011, 2012). Specifically, along with the increase of PAC dosage,
k1 rose from 0.0298 to 0.127 for HDE and from 0.0303 to 0.156 for
DDE,while k2 changed from0.000370 to 0.0112 for HDE and from
0.000432 to 0.0.58 for DDE. It is clear that DDE had higher rate
constants in both models under various PAC dosages, which
is understandable from a molecular interaction perspective as
discussed in Section 1.2.

2.2. Adsorption capacity

2.2.1. Curves of adsorption isotherms
The first approach to diagnose the nature of adsorption
equilibria is to evaluate the shape of the isotherm curves.
According to Giles et al. (1960), four classes of isotherms are
often observed: S, L, H, and C curves. The tested plots of qe vs.
ce are shown in Fig. 4. As depicted in the figure, experimental
adsorption data for HDE and DDE took on an L curve pattern.
The L curves are indicative of molecules adsorbed flat on the
surface where there is no strong competition between solvent
and adsorbate for adsorbent surface sites.

With the aim of precisely describing the experimental
data with appropriate isothermmodels and specifyingmodel
parameters, several isotherm models were employed. The
experimental values of qe and ce were first treated with
linearized forms of the models to obtain model parameters
and correlation coefficients (r), then the isotherms were drawn
using the determined parameters. In addition, the average
percentage error (APE) of each model was calculated to reflect
Table 2 – Kinetic parameters for powdered activated carbo
trans,trans-2,4-decadienal (DDE).

Adsorbate Pseudo first-order Pseudo second-

k1 r k2

HDE 1.00 × 10−1 0.991 6.62 × 10−3

DDE 1.25 × 10−1 0.992 9.36 × 10−3
the extent of fitting between the tested and predicted qe. APE
was obtained according to Eq. (3):

APE ¼
XN

i¼1
qeð Þexperimental− qeð Þpredicted

���
���= qeð Þexperimental

N
� 100% ð3Þ

where, N is the number of experimental data.

2.2.2. Freundlich isotherm
The maximum adsorption capacity qm (μg/mg) derived from
the Freundlich equation can be determined by Eq. (4).

qm ¼ K fc
1
n
0 ð4Þ

The calculated parameters, correlation coefficients r, and APE
for the Freundlich model are listed in Table 3. A good correlation
was suggested by the values of r (>0.985) for both odorants. In
addition, the APEs of Freundlich model fitting results were in an
acceptable range, implying good predictability and precise
description by the model. The adsorption capacity was repre-
sented by constant Kf, and DDE had a larger Kf value. A similar
phenomenon was reflected by the difference of qm values of the
two odorants. The greater adsorption capacity of DDE might be
attributed to its higher logKow value, which makes it easier to
affiliate with the non-polar adsorbent. The exponent 1/n in the
model is an indicator of adsorption favorability (Treybal, 1980). In
general, a value of n in the range of 2–10 means good, 1–2
moderately difficult, and less than 1 poor. According to Table 3,
valuesofn forHDEandDDEwerebetween2and10, implyinghigh
removal intensity by PAC (Hamdaoui and Naffrechoux, 2007).

2.2.3. Langmuir isotherm
The values of correlation coefficient (r > 0.985) in Table 3
suggested a strong agreement between the experimental data
jes
c.a

c.c
n

n adsorption of trans,trans-2,4-heptadienal (HDE) and

order Elovich Intraparticle diffusion

r b r kint r

0.984 7.44 0.897 8.55 × 10−1 0.726
0.981 6.07 0.854 6.76 × 10−1 0.657
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Fig. 2 – Adsorption kinetic curves of trans,trans-2,4-heptadienal (HDE) and trans,trans-2,4-decadienal (DDE) under different
powdered activated carbon (PAC) dosage (c0 = 400 μg/L, pH 7, temperature = 298 K).
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and the Langmuir isotherm. However, the APE of the Langmuir
model for either odorant was substantially larger than that of
the Freundlich model, revealing that the Langmuir equation
was not the best to describe the equilibrium data. Based on the
hypothesis of heterogeneous adsorbent surfaces or heteroge-
neous adsorbent surface energies (Tan et al., 2008, 2009), the
Freundlich isotherm assumes that the stronger binding sites
are occupied first and that the binding strength decreases
with increasing site occupation degree. The Langmuir model,
conversely, assumes a monolayer adsorption onto a surface of
uniform energies and no transmigration of adsorbate on the
adsorbent surface (Hamdaoui and Naffrechoux, 2007; Tan et al.,
2009). In the tested condition, the PAC surface energieswere not
uniform; hence the Langmuir model was not the best choice.

The Langmuir maximum carbon loading values for the two
odorants were 135 μg/mg and 289 μg/mg, displaying the fact
that the PAC uptake of DDE was higher than that of HDE. The
favorability of adsorption could be assessed using Langmuir
parameters in the equation of Hall et al. (1966) (Eq. (5)):

RL ¼ 1= 1þ bc0ð Þ ð5Þ
c.c
n
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Fig. 3 – Adsorption rate constants under different powdered
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trans,trans-2,4-decadienal (DDE) (c0 = 400 μg/L, pH 7, tem-
perature = 298 K).
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where, RL indicates the type of adsorption (RL = 0, irreversible;
0 < RL < 1, favorable; RL = 1, linear; RL > 1, unfavorable).

The calculated RL factors for HDE and DDE were 7.26 × 10−2

and 1.50 × 10−2, meaning favorable adsorption occurred in
each case.

2.2.4. Elovich isotherm
Seen in Table 3, the Elovich model exhibited fairly good
coefficients of correlation (>0.95), but lower than those of the
Freundlich equation and Langmuir model. In addition, the
maximumadsorption capacities predicted by the Elovichmodel
were much lower than the experimental data. The Elovich
model assumes that the adsorption sites increase exponentially
with adsorption, i.e.,multilayer adsorption (Elovich and Larinov,
1962). The discrepancies of maximum adsorption capacities
reflected the fact that the basic hypothesis of multilayer
adsorption did not coincide with experimental results in the
tested concentration range.

2.2.5. Modified Freundlich isotherm
Isotherm studies for NOM adsorption onto activated carbon
demonstrated an adsorbent-dependence phenomenon (Karanfil
and Kilduff, 1999; Hyung and Kim, 2008). This adsorbent-dosage
normalized model has been found suitable in a wide range of
studies (Summers and Roberts, 1988a,b; Kilduff et al., 1996, 1998).
The coefficients of correlation of the Modified Freundlich model
inTable 3 implied good linearity (>0.985) and theAPE valueswere
the smallest among all the studied models. Moreover, HDE gave
a smaller K′f value than did DDE, which is in line with the
experimental data and the result of the Freundlich model.

2.2.6. Temkin isotherm
The employment of the Temkin equation requires the
knowledge of the qm value in advance so as to determine the
fraction coverage (Table 1). It is reasonable to make use of the
qm values derived from Freundlich or Langmuir models. The
parameters of the Temkin equation are listed in Table 4.

The Temkin isotherm assumes that the heat of adsorption
decreases linearly along with surface coverage and that
binding energies are uniformly distributed (Hamdaoui and
Naffrechoux, 2007). As seen in Tables 3 and 4, values of the
correlation coefficient were lower than the Langmuir ones but
jes
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higher than the Elovich ones no matter what maximum
carbon loading value was used. The adsorption energy
variation, i.e., ΔQ, appeared to be positive for both odorants,
implying an exothermic adsorption process. The values of
average percentage error for the two off-flavor compounds
were 7.35% and 2.11% and both were satisfactory for model
fitting. Hence the Temkin equation could adequately describe
the adsorption isotherms of HDE and DDE.

2.2.7. Summary of adsorption isotherms
According to the results and discussions above, the PAC
adsorption isotherms of HDE and DDE could be well described
by the Freundlich model in terms of correlation coefficient,
APE, and the predictedmaximum carbon loading. Other models
showed deviations in data description or maximum carbon
loading prediction. The surface of PACwas in general heteroge-
neous, and the binding energies were not uniformly distributed,
which are in line with the hypothesis of the Freundlich model.
Table 3 – Isothermmodel parameters for the adsorption of
trans,trans-2,4-heptadienal (HDE) and
trans,trans-2,4-decadienal (DDE) onto powdered activated
carbon.

Models Parameters HDE DDE

Freundlich Kf 15.4 93.5
1/n 0.301 0.164
qm 142 346
r 0.992 0.986

Average percentage error (%) 3.89 2.27
Langmuir b 8.00 × 10−3 2.18 × 10−2

qm 135 289
r 0.988 0.998

Average percentage error (%) 13.2 5.08
Elovich KE 9.92 × 10−2 4.08

qm 36.0 44.2
r 0.959 0.986

Average percentage error (%) 6.21 2.08
Modified
Freundlich

K′f 46.1 154
1/n′ 0.197 0.130
r 0.996 0.987

Average percentage error (%) 2.63 2.17
Besides, in the tested concentration range, multilayer adsorp-
tion was not achieved. Thus, the Freundlich model was able to
accurately fit the experimental data.

2.3. Adsorption thermodynamics

The thermodynamic parameters for adsorption include the
Gibbs free energy change ΔG0 (kJ/mol), the enthalpy change
ΔH0 (kJ/mol), and the entropy change ΔS0 (kJ/(mol·K)). These
parameters can be determined as follows:

ΔG0 ¼ −RT lnK ð6Þ

lnK ¼ −
ΔH0

RT
þ ΔS0

R
ð7Þ

where, R (8.314 J/(mol·K)) is the universal gas constant, T (K) is
the absolute temperature and K can be obtained from the
Langmuir isotherm constant b (Wang et al., 2007b; Tan et al.,
2009). Values of K at 298, 308, 318, and 328 K were used to
determine the enthalpy change and the entropy change in
Fig. 5. Values of ΔG0 are listed in Table 5.

The negative values of ΔH0 for both odorants indicated the
exothermic nature of the adsorption. Generally, the enthalpy
change for physical adsorption is usually in the range of nil to
jes
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Table 4 – Parameters of Temkin isotherm for
powdered activated carbon adsorption of
trans,trans-2,4-heptadienal (HDE) and
trans,trans-2,4-decadienal (DDE).

qm HDE DDE

Derived from Freundlich
isotherm

K0 0.155 2.90
ΔQ 15.0 24.3
r 0.972 0.989
Average percentage
error (%)

7.35 2.11

Derived from Langmuir
isotherm

K0 0.155 2.90
ΔQ 14.2 20.2
r 0.972 0.989
Average percentage
error (%)

7.35 2.11
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Table 5 – Thermodynamic parameters
for trans,trans-2,4-heptadienal (HDE) and
trans,trans-2,4-decadienal (DDE) adsorption on powdered
activated carbon.

T (K) ΔG0 (kJ/mol) ΔH0 (kJ/mol) ΔS0 (kJ/(mol·K))

HDE 298 −5.38 −31.2 −8.68 × 10−3

308 −4.52
318 −3.65
328 −2.78

DDE 298 −7.36 −33.5 −8.77 × 10−3

308 −6.49
318 −5.61
328 −4.73
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−42 kJ/mol, and that for chemical adsorption is in the range of
−42 to −125 kJ/mol (Wang et al., 2007b). Thus it is obvious
from the table that the PAC adsorption of the two compounds
could be considered as physical adsorption. Meanwhile, the
negative ΔG0 values indicated that the adsorption process was
feasible and spontaneous (Bilgili, 2006). The change of Gibbs
free energy for physical adsorption is generally in the range of
nil to −20 kJ/mol, and that for chemical adsorption is in the
range of −80 to −400 kJ/mol (Wang et al., 2006). The values
of ΔG0 at different temperatures for the two odorants again
proved that the adsorption of HDE and DDE onto PAC was
mainly a physical adsorption process.

2.4. Effect of initial pH

Isotherms of HDE and DDE under different pH conditions are
depicted in Fig. 6. It could be concluded that in the tested
concentration range, both odorants had progressively higher
adsorption capacities when pH increased from 3 to 7, and
adsorption capacities at pH 11 were generally lower than
those at pH 7 or pH 9. In order to fully investigate the effect
of pH on adsorption capacity, qm values derived from the
Freundlich and Langmuir models were introduced in the
study, and the influence of pH on qm is shown in Fig. 7.

As seen in Fig. 7, the Freundlich maximum adsorption
capacity of HDE rose from 125 to 196 μg/mg when pH increased
from3 to 9, and then decreased to 131 μg/mgat pH 11. Similarly,
the Langmuir maximum adsorption capacity of HDE rose from
105 to 173 μg/mg when pH increased from 3 to 9, and then
dropped to 102 μg/mg at pH 11. As for DDE, the Freundlich qm
increased from 311 to 370 μg/mgwith pH increasing from 3 to 9,
and then dropped to 342 μg/mg at pH 11. Meanwhile, the
Langmuir qm saw a rise from 285 to 314 μg/mg from pH 3 to 9
and went down to 305 μg/mg at pH 11.

Both odorants exhibited higher qm values at pH 9, which
could be explained from the viewpoint of intermolecular forces.
Two interactions, i.e., non-electrostatic interactions (including
dispersion and hydrophobic interactions) and electrostatic
interactions, composed themain forces in the adsorptionprocess
c.c
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Fig. 5 – lnK vs. 1/T plot for the determination of thermodynamic
parameters of trans,trans-2,4-heptadienal (HDE) and
trans,trans-2,4-decadienal.
 c.a

(Moreno-Castilla, 2004). In addition, the solution pHhas influence
on not only the ionization of compounds of interest but also the
surface charge of the adsorbent (El Qada et al., 2006). For HDE and
DDE, pH had no influence on their molecular charge since they
possess no ionizable groups. Thus the variation of maximum
adsorption capacity under different pH conditionswas due to the
change of PAC surface charge. The pHpzc of an adsorbent iswhere
the adsorbent has a net charge of zero on its surface (Sparks,
2002). In general, if the pH of solution is below the adsorbent's
pHpzc, the surface has a net positive charge because of excessive
H+ ions. On the contrary, if the pH is higher than pHpzc, the net
charge is negative (Kubilay et al., 2007). The plot to determine the
point of zero charge of PAC is shown in Fig. 8.

The point of zero charge of the PAC used was observed at
pH 9.45, which implied that at pH 9, the PAC surface had
minimum net charge compared with that under other tested
conditions. Therefore, at pH lower than 9, positive charges on
the surface of adsorbent would adversely influence adsorp-
tion, leading to smaller adsorption capacity. At the same time,
when solution pH was 11, the PAC surface gained negative
charges, undermining the interaction between odorants and
adsorbent. Thus, pH 9 exhibited the most favorable condition
for adsorption of all tested pH values.

According to the results and discussion presented in previous
sections, a mechanism analysis for HDE and DDE adsorption
onto PAC could be conducted. As mentioned above, non-
electrostatic interactions and electrostatic interactions are
the two main forces for adsorption. In the study of pH effect,
the electrostatic attractionwas ruled out as the governing factor.
Research has shown that for the adsorption of phenols and
chlorophenols, theπ–π interaction is the controllingmechanism
(Jung et al., 2001; Wang et al., 2007a). The π–π interaction could
also occur between the PAC surface and organic molecules
with carbon–carbon double bonds (Pan and Xing, 2008). Howev-
er, this mechanism could not explain the adsorption capacity
difference between the two odorants. Thus, as discussed in
the isotherm studies, the governing factor for HDE and DDE
adsorption was the hydrophobic interactions, reflected by the
differences of their logKow values and solubility (2.80 g/L for HDE
and 0.106 g/L for DDE, generated using the US Environmental
Protection Agency's EPISuite™).

2.5. Effect of NOM

In order to investigate the effect of NOM on adsorption, two
groups of experiments were conducted. In the first one, 3 mg/L
jes
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NOM was simultaneously added with a certain amount of
odorant into bottles containing 5 mg/L PAC for adsorption.
For the other group, PAC was allowed to reach equilibrium
adsorption of NOM for 48 hr and then the odorant was fed and
adsorbed by the preloaded PAC. The results are depicted in
Fig. 9.
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Fig. 7 – Effect of pH on qm for powdered activated carbon
adsorbing trans,trans-2,4-heptadienal (HDE) and
trans,trans-2,4-decadienal (DDE).
For HDE, 5 mg/L PAC was able to remove 20.5% of the
odorant with initial concentration of 2.5 mg/L without back-
ground NOM. On the other hand, 84.6% of the original 1 mg/L
DDEwas adsorbed by 5 mg/L PACwithout background NOM. It
is clear in the figure that the presence of NOM inhibited the
adsorption of the two odorants to different extent. For both
odorous compounds, the inhibition effect grew larger with the
decrease of NOMmolecular weight. Specifically, the bulk NOM
displayed a slight adverse effect on adsorption, while the
jes
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NOM fraction with MW less than 1 k Da reduced the removal
rate of HDE and DDE to less than 10% and 50% respectively.

The main mechanism involved in the adsorption of the two
aldehydes ishydrophobic attraction, thus the adsorption capacity
relies on the volume of appropriate size pores, i.e., micropores,
available (Newcombe et al., 1997); and the available amount of
pores is mostly influenced by the NOM fraction with MW <1000.
The larger size fractions are not in direct competition with
the compounds of interest since they predominantly take up the
larger pores. Therefore, with constant initial NOM of 3 mg/L, the
more intense competition occurred as the nominal molecular
weight decreased.

Furthermore, the removal efficiency of adsorption was
reducedmore by the preloadedNOM than by the simultaneously
dosed NOM. Seen in the figure, the preloaded PAC had 2%–4%
lower removal rate for HDE than in the simultaneous dosage
situation for every NOM molecular weight fraction. The trend
was more evident for DDE, where a 10%–20% reduction of
adsorption rate was observed.

In addition to direct competition with the target compound,
the preloaded NOM could adversely affect adsorption in ways
such as (1) blocking access to micropores, (2) keeping odorants
away from the nonpolar regions on the PAC surface, and (3)
reducing the interaction energy between adsorbent and adsor-
bate (Müller et al., 2000; Matsui et al., 2002). Moreover, Kilduff et
al. (1998) reported that the preloaded NOM would reduce the
number of high-energy adsorption sites, leading to substantial
loss of adsorption capacity. Hence the preloading of NOM could
greatly affect the adsorption of HDE and DDE onto PAC, which
should be considered in practical application.
c.c
n

3. Conclusions

This study provided a deep insight into PAC adsorption of
HDE and DDE through the investigation of adsorption kinetics,
isotherms, thermodynamics, and influencing factors. For kinet-
ics, the pseudo first-order and pseudo second-order kinetic
models could well describe the kinetic patterns, with DDE having
higher kinetic rate constants. In isotherm tests, Freundlich and
Modified Freundlich isotherms sufficiently predicted the adsorp-
tion capacity. The higher hydrophobicity of DDE led to a higher
adsorption capacity on PAC. The thermodynamic study revealed
the exothermic nature of the adsorption and proved that the
processwas spontaneous and feasible. PACdosage had apositive
influence on the rate constants of both the pseudo first-order
model and the pseudo second-order model. At pH 9, a pH value
near the pHpzc of PAC, maximum adsorption of the two odorants
was observed. The preloaded NOM inhibited the adsorption of
HDE and DDE more significantly than the simultaneously added
NOM.
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