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It is important to develop efficient and economic techniques for removing volatile organic
compounds (VOCs) in indoor air. Heterogeneous TiO2-based semiconductors are a promising
technology for achieving this goal. Anatase/brookite/rutile tricrystallineTiO2withmesoporous
structure was synthesized by a low-temperature hydrothermal route in the presence of HNO3.
The obtained samples were characterized by X-ray diffraction and N2 adsorption–desorption
isotherm. The photocatalytic activity was evaluated by photocatalytic decomposition of
toluene in air under UV light illumination. The results show that tricrystalline TiO2 exhibited
higher photocatalytic activity and durability toward gaseous toluene than bicrystalline TiO2,
due to the synergistic effects of high surface area, uniform mesoporous structure and
junctions among mixed phases. The tricrystalline TiO2 prepared at RHNO3 = 0.8, containing
80.7% anatase, 15.6% brookite and 3.7% rutile, exhibited the highest photocatalytic activity,
about 3.85-fold higher than that of P25. The high activity did not significantly degrade even
after five reuse cycles. In conclusion, it is expected that our study regarding gas-phase
degradation of toluene over tricrystalline TiO2 will enrich the chemistry of the TiO2-based
materials as photocatalysts for environmental remediation and stimulate further research
interest on this intriguing topic.
© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

Volatile organic compounds (VOCs) are a group comprising the
most abundant organic pollutants in indoor air, with concen-
trations ranging from 0.005 to 4600 μg/m3 (Barro et al., 2009).
They are emitted from various sources such as combustion
by-products, cooking, constructionmaterials, office equipment,
and consumer products (Gallego et al., 2008; Weschler, 2009).
Many VOCs are toxic or carcinogenic to humans, even at low
concentrations (Missia et al., 2010). For instance, exposure to
formaldehyde, benzene or toluene may cause skin irritation,
o-Environmental Science
rhinitis, headache, fatigue, and allergic reactions (Bernstein
et al., 2008; Gallego et al., 2009); and benzene derived from
aromatic molecules can show carcinogenic or mutagenic
activity (Missia et al., 2010).

A number of techniques have been developed to remove
VOCs from indoor air, such as adsorption techniques and
oxidation techniques (Parmar and Rao, 2009). The former are
conventional methods; gaseous pollutants are transferred from
air to a solid phasewith various adsorbents, e.g., activated carbon
(Liu et al., 2004). In contrast, heterogeneous photocatalysis
using semiconductors as photocatalysts, an advanced oxidation
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technique, has greater potential. In the photocatalytic processes,
an array of VOCs can be destroyed and even completely
mineralized into CO2 and H2O (Demeestere et al., 2007; Nakata
and Fujishima, 2012). While compared to other oxidation
technologies like electron beam and plasma treatments, hetero-
geneous photocatalysis is more effective and economical, and
suitable for wider application scope.

Among all semiconductor photocatalysts, TiO2 (primarily
existing in three crystal phases, i.e., anatase, brookite, and rutile)
is themost efficient and applicable, because of itswide band-gap
energy, durability against photocorrosion, low toxicity and low
cost (Demeestere et al., 2007; Wang et al., 2007). However, the
photocatalytic applications of TiO2 are limited by its low
quantum efficiency due to the fast recombination between the
photogenerated electrons and holes (Chen and Mao, 2007). The
formation of phase junctions has been demonstrated as an
effective strategy for inhibiting photogenerated electron-hole
recombination (Li and Gray, 2007). In practice, tricrystalline TiO2

has been synthesized by thermohydrolysis of TiCl4 (Di Paola
et al., 2008, 2009) and with solvothermal treatment of titanium
tetrabutoxide (TBOT) in toluene (Liao et al., 2012). In the aqueous
phase, the tricrystalline TiO2 exhibited higher photocatalytic
activity for organic pollutants than bicrystalline TiO2.

However, the photocatalytic performance and durability of
tricrystalline TiO2 have not been tested in the gas phase. Due to
the accumulation of strongly bound reaction intermediates on
the TiO2 surface (Demeestere et al., 2007; Hu et al., 2006),
deactivation of TiO2 during photodegradation of organic pollut-
ants wasmuchmore frequently observed in the gas phase than
the aqueous phase. Additionally, the existing methods for
synthesizing tricrystalline TiO2 are energy-consuming, and
usually require high-temperature (≥400°C) (Lopez et al., 2001),
long-time (≥48 hr) treatments (Di Paola et al., 2008, 2009), or
toxic toluene (Liao et al., 2012).

In this study, we aim to promote the application of
tricrystalline TiO2 in photocatalytic elimination of indoor VOCs.
Anatase/brookite/rutile tricrystalline TiO2 was synthesized
using a low-temperature hydrothermal method with the
assistance of HNO3. The photocatalytic activity and durabil-
ity in the photodegradation of toluene were analyzed and
compared to P25 TiO2 (a widely used benchmark model
photocatalyst). Toluene is one of the most abundant VOCs
found in indoor air (Greenberg, 1997; Wang et al., 2007) and is
not easily degraded due to the relative stability of its aromatic
ring against oxidation and reduction processes (Hodgson
et al., 2007).
c.c
n

1. Materials and methods

1.1. Synthesis

Anatase/brookite/rutile tricrystalline TiO2 was prepared as
follows. 4.4 mL TBOT (Aladdin Reagent Co.) was slowly added
to 50 mL of a 10 mol/L NaOH solution under vigorous stirring,
yielding an amorphous TiO2 suspension. After 5 hr stirring, the
suspension was separated by centrifugation, washed three
timeswith deionizedwater and redispersed in 39 mL deionized
water. Then, a concentrated HNO3 solution (65%) was added
under stirring. The molar ratios of HNO3 to TBOT (RHNO3) were
 c.a

varied from 0.2 to 1.2 at intervals of 0.2 by varying the volume
of HNO3 solution. Themixture was sealed in a Teflon autoclave
and maintained at 180°C for 24 hr. Finally, the resulting
precipitate was separated by centrifugation, washed with
deionized water until the washing solution reached pH 7 and
then dried at 50°C. The TiO2 powders were labeled as TiO2-a.
For example, TiO2 nanocrystals prepared at RHNO3 = 0.8were
denoted as TiO2-0.8.

1.2. Characterization

The synthesized products were characterized in three aspects,
including the X-ray diffraction (XRD) pattern, specific surface
area and pore size distribution. First, the XRD patterns
were explored between 20° and 90° (2θ range, Δ2θ = 0.02°) with
a D/MAX 2550 PC using Cu Kα radiation (Rigaku, Tokyo, Japan).
The phase contents of the TiO2 sampleswere calculated from the
integrated intensities of anatase (101), rutile (110), and brookite
(121) peaks (Luo et al., 2003; Zhang and Banfield, 2000). The
average diameters (d) of the crystallites (i.e., anatase, rutile and
brookite) were calculated from the full-width at half-maximum
of the respective XRD patterns using the Scherrer formula
(Patterson, 1939). Second, the specific surface areas were esti-
mated using N2 adsorption experiments based on the classical
Brunauer–Emmett–Teller (BET) method, which were conducted
in the relative pressure range of 0.01 to 0.1 with a NOVA 2000e
surface area analyzer (Quantachrome, Florida, U.S.A.). The pore
size distributions of the TiO2 nanocrystals were calculated from
the desorption branch of the nitrogen isotherms using the
Barrett–Joyner–Halenda (BJH) method (Barrett et al., 1951).

1.3. Photocatalytic activity

The photocatalytic activity of tricrystalline TiO2 was evaluat-
ed by the photocatalytic degradation of toluene in air under
UV irradiation, with P25 as a reference. The photodegradation
of gaseous toluene was conducted in a cylindrical quartz
photoreactor operating in continuous flow mode (Fig. 1). The
carrier gas generated from a clean-air generator was split into
three streams. The first stream was bubbled through water to
set the humidity for the reaction (20% ± 3%), and the second
stream was used to generate a gaseous stream of toluene
passed through a permeation tube filled with pure liquid
toluene cooled in an ice-water bath. These two streams then
converged with the clean air branch (the third stream) in a
1.5 L-cylindrical-chamber. The toluene/air mixed vapor was
fed to the catalyst dish at a total flow rate of 1 L/min, and the
concentration of toluene was 1 ppm, which is a typical level in
indoor air environments. The catalyst dish was prepared by
coating 20 mg of TiO2 onto a piece of quartz wool with an
area of 11 × 20 cm2 using 20 mL of a TiO2/ethanol suspension.
A 6 W UV lamp with a dominant wavelength of 254 nm was
used as the irradiation source. The distance between the
catalyst dish and the lamp was 1.5 cm. The concentrations of
toluene were determined using an online gas chromatograph
(GC, Fuli 9790, Wenling, China) equipped with a stainless steel
packed column (2.5% dinonyl phthalate + 2.5% bentane,
length: 3 m, diameter: 3 mm) and a flame ionization detector.
Prior to photodegradation, adsorption equilibrium of toluene
on the photocatalyst was achieved in 4 hr without irradiation.
jes
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Fig. 1 – Photocatalytic device. (1) Air generator; (2) mass flowmeter; (3) VOC saturator; (4) H2O saturator; (5) mixing chamber;
(6) thermometer; (7) Two-way valve; (8) photocatalytic reactor; (9) GC.

Fig. 2 – XRD patterns of TiO2 nanocrystals. Peaks of anatase,
brookite and rutile are identified as A, B and R, respectively.
RNO3 is molar ratio of HNO3 to titanium tetrabutoxide (TBOT)
during the production process of TiO2 nanocrystals.
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The photodegradation rate of toluene was calculated by the
following equation:

ηt ¼
C0 − C
C0

� 100% ð1Þ

where ηt (%) represents the photodegradation rate at reaction
time t, C0 (mg/m3) and C (mg/m3) are the initial and the reaction
concentration of toluene, respectively. The photocatalytic degra-
dation of toluene on TiO2 is a pseudo-first-order reaction and its
kinetics can be expressed as follows (Demeestere et al., 2007):

1n
C0

C

� �
¼ kappt

where, kapp (min−1) represents the apparent kinetic constant.

1.4. Hydroxyl radicals

In order to explore the synergistic effects of anatase–
brookite–rutile phases, the formation of hydroxyl radicals
(UOH) during the UV irradiation of TiO2 nanocrystals was studied.
The amount of UOH radicals generated on the surface of
UV-irradiated TiO2 was measured with the terephthalic acid
(TA, Aladdin Reagent Co., Shanghai, China) fluorescence probe
method (Hirakawa andNosaka, 2002; Ishibashi et al., 2000b). TiO2

5 mgwas suspended in 50 mL of an aqueous solution containing
2 mmol/L NaOH and 0.5 mmol/L TA. The suspension was
stirred in darkness for 30 min. Then, 3 mL of the suspension
was exposed to UV light irradiation at a wavelength of 254 nm
(using a 6-W UV lamp as the light source) for 5 min, followed
by filtration through a 0.25 μm membrane filter. Finally, the
fluorescence signal of 2-hydroxy terephthalic acid (TAOH) at
426 nm was recorded on a RF-5301pc spectrofluorophotometer
(Shimadzu, Tokyo, Japan) at an excitationwavelength of 320 nm.

1.5. Photocatalytic durability

To explore the photocatalytic long-term durability advantage
of the TiO2 samples with the highest photocatalytic activity,
five reuse cycles were tested for the photodegradation of
gaseous toluene. Each cycle included 2 hr of light on and 4 hr
of light off.

The possible gaseous intermediates (Demeestere et al., 2007),
such as benzene, phenol benzaldehyde, benzyl alcohol and
benzoic acid, were analyzed by collecting air samples at the
reactor outlet in stainless steel tubes packed with 300 mg
activated carbon during the photodegradation. The absorbed
intermediateswere extracted into carbondisulfide andmeasured
byGC.CO2was converted intomethane in a converterwithnickel
catalysts at a temperature of 350°C and also determined on the
online GC. The concentration of toluene was maintained at
100 ppm in the intermediate andCO2 identification tests, in order
to improve the accuracy of test results.
2. Results and discussion

2.1. Phase composition

The phase compositions of the obtained sampleswere sensitive
to the molar ratios of HNO3 to TBOT (RHNO3). The XRD patterns
show that the samples obtained at RHNO3 between 0.8 and
1.2 were anatase/brookite/rutile three-phase TiO2 nanocrystals
(Fig. 2). According to the standard diffraction data, the charac-
teristic 2θ values at around 25.3°, 30.8° and 27.4° corresponded
to the anatase (101) plane (JCPDSNo. 21-1272), the brookite (121)
plane (JCPDS No. 29-1360) and the rutile (110) plane (JCPDS
No. 21-1276), respectively. The anatase content increased from
26.0% to 80.7% and the rutile content decreased from 54.8% to
3.7%whenRHNO3 decreased from1.2 to 0.8,whereas the brookite
jes
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Table 1 – Physicochemical properties of TiO2 nanocrystals and P25.

RHNO3
a Anataseb

(%)
Brookiteb

(%)
Rutile b

(%)
d (anatase) b

(nm)
d (brookite) b

(nm)
d (rutile) b

(nm)
SBET

(m2/g−)
Pore size c

(nm)

1.2 26.0 19.2 54.8 19.2 8.70 23.3 92.10 8.6
1.0 59.5 14.5 26.0 8.60 7.60 21.3 112.9 6.3
0.8 80.7 15.6 3.70 8.20 7.50 19.2 136.6 5.4
P25 80.0 – 20.0 25.0 – 35.0 58.00 7.1

a Molar ratio of HNO3 to titanium tetrabutoxide (TBOT) during the production process of TiO2 nanocrystals.
b Determined by X-ray diffraction (XRD) patterns.
c Estimated using the desorption branch of the N2 adsorption/desorption isotherm and the Barrett–Joyner–Halenda (BJH) formula.
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content remained relatively steady (14.5–19.2%) (Table 1). These
trends are consistent with previous reports (Tian et al., 2006;
Yuan et al., 2004), which indicates that a dilute acid solution
favored the formation of anatase, while a concentrated acid
solution promoted the formation of rutile. The generation of the
brookite phase might be attributed to the presence of Na+ ions
(Shen et al., 2013). The above results demonstrate an effective
approach to the controllable fabrication of tricrystalline TiO2

with a low-temperature hydrothermal treatment.

2.2. Photocatalytic activity

As shown in Fig. 3a, at the beginning of irradiation, adsorbed
toluene on TiO2 was preferentially degraded, after which more
toluene could be adsorbed and degraded. During this period,
toluene reacted rapidly. As the concentration of toluene was
constant, the adsorption equilibrium and degradation equilibri-
um were easily reached, and the photodegradation rate of
toluene leveled off. The photodegradation rate of toluene did
not decrease and no deactivation was observed during a 2-hr
test. It is unlikely that the leveling-off phenomenon was due to
deactivation of the catalysts by the remaining intermediates,
because if intermediates remained and occupied the active sites
of the TiO2 surface, the photodegradation rate of toluene would
have decreased rather than leveling off. It could be clearly
observed that the final degradation sequence followed the same
order of the rate constants (Fig. 3b),which initially increasedwith
decreasing RHNO3 and then decreased. Tricrystalline TiO2-0.8
Fig. 3 – Photodegradation of gaseous toluene on TiO2 nanocrystals a
was proved to be the most efficient photocatalyst, with a
photodegradation conversion of 89% and an apparent kinetic
constant of 9.3 × 10−2 min−1. In contrast, P25 only showed a
photodegradation conversion of 44% and an apparent kinetic
constant of 24 × 10−3 min−1. Moreover, a decrease in the activity
of tricrystalline TiO2 was observed when RHNO3 became larger
than 0.8, during which the ratio of anatase–brookite–rutile
shifted away from its optimum.

Two factors are essential during gas–solid photocatalysis:
the adsorption of pollutant molecules and the separation/
transport of electrons and holes. The adsorption is usually
related to the surface area and the pore structure of TiO2. The
tricrystalline TiO2-0.8 had the largest surface area (136.6 m2/g)
because it had the smallest crystallite size (Table 1). Also,
this TiO2 nanomaterial exhibited a type IV isotherm with a
hysteresis loop of type H2 over the relative pressure range of
0.5 to 0.8 (Fig. 4), indicating the presence of ink-bottle-like
pores with narrow necks and wider bodies (Dai et al., 2012;
Yu et al., 2003). Thesemesopores resulted from the aggregation
of primary particles, with the smallest average pore size of
approximately 5.4 nm (Fig. 4). A larger surface area favors TiO2

adsorbingmore gaseous reactants, such as H2O, O2 and organic
pollutants, onto the surface, and the uniform mesopores allow
for the rapid diffusion of these reactants and various products
during the photocatalytic reaction, thereby enhancing the
photocatalytic activity (Ismail and Bahnemann, 2011; Yu et al.,
2006). However, the kinetic constantwithnormalized by surface
area for tricrystalline TiO2 (0.68 × 10−3 g/(min · m2)) was still
jes
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Fig. 4 – Nitrogen adsorption–desorption isotherm of
tricrystalline TiO2-0.8. The inset was the pore size distribution
curve calculated from the desorption branch of the nitrogen
isotherm using the BJH method.

Fig. 5 – Fluorescence intensity changes observed during the
irradiation of tricrystalline TiO2-0.8 and P25 in a 0.5 mmol/L
aqueous NaOH solution of terephthalic acid (excitation at
320 nm).

Fig. 6 – Recycling test over tricrystalline TiO2-0.8 (blank) and
P25 (filled) for five repeat uses.
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higher than that of P25 (0.42 × 10−3 g/(min·m2)), clearly demon-
strating that surface area is not the only influential factor for
photocatalytic activity in this system.

Therefore, the other crucial factor for enhancing the photo-
catalytic activity of TiO2 is the efficient charge separation and
transfer, which could be evaluated by the formation of UOH
radicals during the UV irradiation of TiO2 nanocrystals in TA
solutions (Lv et al., 2010; Xiang et al., 2010; Yu et al., 2009). The
absorption of a photon with energy higher than the band gap
energy results in the formation of a valence band hole and a
conduction band electron. It is commonly acknowledged that
adsorbed water or hydroxide ions can be trapped by the holes to
produce UOH radicals, which are known to be a strong oxidizing
species. Electrons are trapped at the surface after reacting
with adsorbed molecular oxygen to produce superoxide anion
radicals, which then form more UOH radicals. The yield of UOH
radicals depends on the competition between the above
reactions and electron-hole recombination. Therefore, the
higher the formation rate of UOH radicals, the higher the
separation efficiency of electron-hole pairs achieved can be.
Fig. 5 shows the changes in fluorescence spectrawith irradiation
time for TA solutions. No increase in fluorescence intensity was
observed in the absence of UV light or TiO2 nanocrystals,
indicating that the fluorescence was caused by the chemical
reaction of TA with UOH that formed on the TiO2/water interface
via photocatalytic reactions (Hirakawa et al., 2007; Ishibashi et
al., 2000a). On the contrary, in the presence of TiO2 nanocrystals,
the fluorescence intensity as a result of UV irradiation in TA
solutions increased linearly as a function of time. Thus, it could
be inferred that the number of UOH radicals produced at the TiO2

surface was proportional to the irradiation time and that this
reaction obeyed zero-order reaction rate kinetics. Tricrystalline
TiO2-0.8 showed a much greater formation rate than P25,
suggesting that the three-phase composite (anatase/brookite/
rutile) enhanced the production of UOH radicals. The two-phase
structure of anatase and rutile with a suitable ratio has been
reported to be beneficial in reducing the recombination rate of
photo-generated electrons and holes, thereby enhancing the
rate of UOH formation (Lv et al., 2010). This enhancing relation-
ship also applies to tricrystalline TiO2. The coupled anatase,
brookite and rutile phases possessed different redox energies for
their corresponding conduction and valence bands (Shibata
et al., 2004; Yin et al., 2010). Heterojunctions were thus formed,
allowing aneasier transfer of photogeneratedelectrons fromone
phase to another, which could suppress the recombination of
photogenerated electrons and holes and consequently enhance
the production of UOH radicals. In summary, the high photocat-
alytic activity of tricrystalline TiO2-0.8 could be attributed to the
combined effects of high specific surface area, uniformmesopo-
rous structure and junctions among mixed phases.

2.3. Photocatalytic durability

The toluene conversion on tricrystalline TiO2-0.8 was main-
tained at 89% ± 1%without significantdeactivation for up to five
repeated cycles, while P25 gradually lost its activity (Fig. 6). A
jes
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Table 2 – Comparison of intermediates and CO2 resulted
from toluene degradation by tricrystalline TiO2-0.8 and P25.

RHNO3 Intermediates a (mg/m3) CO2 yield (%)

Benzyl
alcohol

Benzaldehyde Benzoic
acid

0.8 0.17 42.00 n.d. b 56.3
P25 0.61 376.4 0.01 20.9

a Concentrations of intermediates in the extracts.
b Not detected.
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color change of P25 fromwhite to yellowwas observed after the
third reuse cycle. These results could be attributed to the more
effective decomposition of toluene and refractory intermediates
by the tricrystalline TiO2-0.8. As intermediates, benzyl alcohol
and benzaldehydewere identified for both tricrystalline TiO2-0.8
and P25, whereas benzoic acid was identified only for P25
(Table 2). It is clear that the oxidation of toluene took place at the
methyl group for both photocatalysts. The concentrations of
three main intermediates for tricrystalline TiO2-0.8 were much
lower than those for P25, while the yield of CO2 for tricrystalline
TiO2washigher than that for P25 (56.3%and20.9%, respectively),
confirming that tricrystalline TiO2-0.8 enhanced the photocat-
alytic degradation of both toluene and its intermediates.

In an attempt to increase the TiO2 lifetime, other researchers
have carried out catalyst regeneration, focusing on the destruc-
tion of presumed intermediates. Twomain types of regeneration
methods have been reported (Cao et al., 2000; Demeestere et al.,
2007; Lewandowski and Ollis, 2003). First, thermal regeneration
of TiO2 deactivated after toluene degradation was applied
(Cao et al., 2000). Temperatures as high as 420°C for at least
2 hr were required to “burn out” strongly bound intermedi-
ates and to recover the initial activity completely. A second
type of regeneration method involves exposure of deactivated
TiO2 to contaminant-free, humidified air and UV irradiation
(Lewandowski andOllis, 2003). However, thesemethods require
high regeneration temperature or long regeneration time,
costing much energy. Based on the photocatalytic activity
and reuse tests, this tricrystalline TiO2-0.8 was not only
highly efficient but also quite durable for prolonged use.
c.c
n

3. Conclusions

With the assistance of HNO3, anatase/brookite/rutile
tricrystalline TiO2 with high crystallinity, large surface
area (136.6 m2/g) and uniformmesopores (5.4 nm)was success-
fully prepared using a low-temperature hydrothermal method.
Compared to the existing methods, this route was more
energy-saving, and the phase structure could be finely con-
trolled by adjusting the amount of HNO3. The three-phase TiO2

nanocrystals showed much higher photocatalytic activity and
durability in the degradation of gaseous toluene than the
commercial anatase/rutile P25,mainly because of their superior
properties in the adsorption of pollutant molecules and the
separation/transport of electrons and holes. It is expected that
our study regarding gas-phase degradation of toluene over
tricrystalline TiO2 can enrich the chemistry of TiO2-based
materials as photocatalysts for environmental remediation
and stimulate further research interest on this intriguing topic.
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