Heterogeneous uptake of nitrogen dioxide on Chinese mineral dust

Li Zhou1,2, Weigang Wang1,⁎, Siqi Hou1, Shengrui Tong1, Maofa Ge1,⁎

1. Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Email: zhouli@iccas.ac.cn
2. Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Peking University, Beijing 100871, China

ARTICLE INFO

Article history:
Received 19 January 2015
Revised 19 May 2015
Accepted 20 May 2015
Available online 21 July 2015

Keywords:
Mineral dust
Nitrogen dioxide
Uptake coefficient
Temperature dependence

ABSTRACT

Mineral dust is one of the major aerosols in the atmosphere. To assess its impact on trace atmospheric gases, in this work we present a laboratory study of the effect of temperature on the heterogeneous reaction of NO2 on the surface of ambient Chinese dust over the temperature range from 258 to 313 K. The results suggest that nitrogen dioxide could mainly be adsorbed on these types of Chinese mineral dust reversibly with little temperature dependence. Similar to a previous study on NO2 uptake on mineral aerosols, the uptake coefficients are mainly on the order of 10−6 for the Chinese dust, when BET areas are taken into account. HONO was observed as a product, and its formation and decomposition on Chinese mineral dust during the uptake processes were also studied. The complete dataset from this study was compiled with previous literature determinations. Atmospheric implications of the heterogeneous reaction between NO2 and mineral dust are also discussed, in an effort to understand this important heterogeneous process.

© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Introduction

Mineral particulate matter, constituting 36% of total primary aerosol emissions, has been recognized as one of the major aerosols in the troposphere (Ooki and Uematsu, 2005; Sullivan et al., 2007). Annually, about 1000–3000 Tg mineral dust is emitted into the atmosphere (Dentener et al., 1996; Harrison et al., 2001; Usher et al., 2003). Mineral dust can react with various trace gases, and the lifetimes of the various trace gases may change via heterogeneous interactions with dust, which can provide reactive sites for surface-mediated heterogeneous reactions (Prospero, 1999; Wagner et al., 2008).

The chemical interactions between mineral dust and pollutants are significant factors to atmospheric processes; dust plumes that originate from Saharan Africa or central Asia can be transported several thousands of kilometers and mix with air from urban areas (Carmichael et al., 1997; Song and Carmichael, 2001; Tang et al., 2004). As one of the predominant polluting gases, nitrogen dioxide can influence the pH of rainwater and lead to the formation of secondary nitrate aerosols. A typical concentration of NO2 in the photochemical smog may reach 70 ppb, but in emission sources, such as coal power plant stations and motor engines, the NO2 concentration may reach as high as 400 ppm (Zamaraev et al., 1994; Lisachenko et al., 2006). With increasing NO2 concentrations in the troposphere, the importance of NO2 reactions with mineral dust in the atmosphere needs to be evaluated.

MINERALS AND MINERAL DUST

Mineral dust, a heterogeneous mixture of different mineral species, has a significant impact on the chemical and physical properties of the atmosphere. The composition of mineral dust can vary significantly depending on the source region and the specific mineral species present. The impact of mineral dust on atmospheric trace gases is complex and depends on a variety of factors, including the chemical properties of the dust, the specific trace gases involved, and the temperature and humidity conditions.

The chemical interactions between mineral dust and trace gases can occur through a variety of mechanisms, including physical adsorption, heterogeneous reactions, and chemical processes. These interactions can have significant implications for atmospheric chemistry, climate, and air quality.

In this study, we focus on the heterogeneous reaction of nitrogen dioxide (NO2) on the surface of Chinese mineral dust. We present a laboratory study of the effect of temperature on this reaction over the range from 258 to 313 K. The results suggest that nitrogen dioxide could mainly be adsorbed on these types of Chinese mineral dust reversibly with little temperature dependence. Similar to a previous study on NO2 uptake on mineral aerosols, the uptake coefficients are mainly on the order of 10−6 for the Chinese dust, when BET areas are taken into account. HONO was observed as a product, and its formation and decomposition on Chinese mineral dust during the uptake processes were also studied.

The complete dataset from this study was compiled with previous literature determinations. Atmospheric implications of the heterogeneous reaction between NO2 and mineral dust are also discussed, in an effort to understand this important heterogeneous process.

© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

* Corresponding authors. E-mails: wangwg@iccas.ac.cn (Weigang Wang), gemaofa@iccas.ac.cn (Maofa Ge).

http://dx.doi.org/10.1016/j.jes.2015.05.017
1001-0742/© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
implications for improving the treatment of dust in global chemistry models and highlight a number of key processes that merit further investigation through laboratory and field studies (Guan et al., 2014; Nie et al., 2012; Li et al., 2010; Li and Han, 2010; Sullivan et al., 2007).

Heterogeneous reactions of NO2 with atmospheric mineral particulates are thought to be a source of atmospheric HONO (Febo et al., 1996). Studies show high levels of hygroscopic nitrate are generated by the heterogeneous conversion of NO2 on the surface of particulates in the atmosphere (Al-Abadleh et al., 2003). Heterogeneous processes are thought to be the major source of HONO in the atmosphere. They have been intensively studied in the laboratory, and several mechanisms of HONO formation on aerosols and the ground surface have been proposed (Cwiertny et al., 2008). The enhanced NO2 conversion could be an important HONO, and therefore also nitrogen dioxide on the surface of particulates in the atmosphere (Al-Abadleh et al., 2013). The surface areas of these powders were measured with a Quantachrome Autosorb-1-C BET apparatus (autosorb-iQ, Quantachrome Instruments, USA) using multipoint Brunauer-Emmett-Teller (BET) analysis. The BET areas were determined to be 5.06 m2/g for Inner Mongolia desert dust, and 20.98 m2/g for Xinjiang sierozem.

Gaseous nitrogen dioxide (99.9%) purchased (Beijing Huayuan Gas Chemical Industry Co., Ltd., Beijing, China) was used directly without any purification.

1.2. Knudsen cell experiments

A Knudsen cell reactor coupled with a quadrupole mass spectrometer was used to measure the uptake coefficient of nitrogen dioxide on the Inner Mongolia desert dust and Xinjiang sierozem (Chinese Standard Substance Center). This experimental apparatus has been described in detail elsewhere (Wang et al., 2011; Zhou et al., 2012).

Briefly, the Knudsen cell reactor (volume of 461 cm3), with four isolated sample compartments and a small escape aperture, links to an electron impact ion source (EI) quadrupole mass spectrometer (HAL 3F 501, Hiden Analytical Ltd, Warrington, UK). The geometric area of the sample holder (As) was 5.3 cm². The effective area of the escape aperture was measured in each independent experiment according to the attenuation of the N2 signal from one steady state to another (Li et al., 2002). It was about 0.173 cm² in our experiments. NO2 was monitored by the m/z = 46 channel. The powdered samples were prepared in Teflon-coated metal sample holders, by heating a hydrosol of the powder until a dry coating of the sample remained on the bottom surface of the holder. In the Knudsen cell experiments, NO2 gas was introduced through a leak valve to the desired pressure as measured with a wide range gauge (WRG-S-NW25, Edwards, UK). For the total uptake measurements, it was necessary to calibrate the flow out of the cell in terms of molecules per second. This was accomplished using the effective area of the escape aperture and the conversion of pressure to flux using the kinetic theory of gases. This gave the number of molecules per second escaping the cell as a function of pressure. Multiplying this value by the experimentally determined absolute pressure versus the quadrupole mass spectrometer (QMS) intensity data yields a conversion factor through which the NO2 mass spectrometer signal is converted to molecular flow through the cell. Relative mass spectral sensitivities for NO2 were determined from calibration with the pure gases. These sensitivity factors were then used in conjunction with the daily NO2 calibration to convert the mass spectrometer signal to molecular concentration for NO2.

When a sample was exposed to nitrogen dioxide, the signal of nitrogen dioxide molecular ion monitored at m/z = 46 dropped below its original value suddenly. An observed uptake coefficient (γobs) can be derived from the Knudsen cell Eq. (1):

\[\gamma_{obs} = \frac{A_h}{A_r} \left(\frac{I_0 - I}{I} \right) \]

where \(A_h \) is the effective area of the escape hole (cm²), \(A_r = 0.1713 \text{ cm}^2 \) in this study, \(A_s = 5.3 \text{ cm}^2 \) in this study), and \(I_0 \) and \(I \)
are the QMS intensities detected when sample holder is covered and exposed (dimensionless), respectively. The values obtained from this equation are the initial uptake coefficients, \(\gamma_{\text{init,obs}} \) (dimensionless). In view of the reaction conditions in the Knudsen cell, which is at low pressure, data presented in our experiments can only represent the uptake process in dry conditions. It is important to view the data as representing the lower limit of the initial uptake coefficients.

In order to control temperature within the Knudsen chamber, the total number of the gas-surface collisions is only those occurring on the top layer. The observed mass dependence involves the diffusion of the reactant gas to underlying layers, resulting in an increase in the number of collisions with the total surface area. In this situation the entire BET area of the sample contributes to the observed uptake coefficient. As can be seen from Fig. 2, the observed uptake values are dependent on the mass of the samples. Therefore, a modification was made to the standard Knudsen cell equation in which the geometric area of the sample holder is replaced by the BET area of the sample (Underwood et al., 2000, 2001b). The plot in Fig. 2 shows the region where \(\gamma_{\text{obs}} \) is linearly dependent on the mass of the samples. From the plot, a mass independent uptake coefficient can be derived as

\[
\gamma_{\text{BET}} = \frac{A_0}{A_{\text{BET}}} \left(\frac{I_0}{I} - 1 \right) = \gamma_{\text{obs}} \times \frac{A_0}{A_{\text{BET}}} \quad (2)
\]

where \(A_{\text{BET}} \) is the surface area of the sample, taken as the BET area (m\(^2\)), which is equal to the specific BET area of the powder (m\(^2\)/g) multiplied by the sample mass (g) (Underwood et al., 2001a). The results derived from each experiment were in this linear regime and summarized in Table 1.

The influence of the nitrogen dioxide concentration to the uptake coefficient was also taken into account over the range from 3.7 \(\times \) 10\(^{11} \) to 1.2 \(\times \) 10\(^{12} \) molecules/cm\(^3\). On varying the initial concentration of nitrogen dioxide, there was no distinct dependence of initial uptake coefficient in this concentration range. After a long exposure time, the uptake of nitrogen dioxide on mineral dust surface showed relative saturation, such that the nitrogen dioxide signal recovered to a steady state. Besides the NO\(_2\) (m/z = 46) channel, other ion fragments, including NO (m/z = 30), N\(_2\)O (m/z = 44) and HONO (m/z = 47) were also monitored during the uptake experiment. However, the strength of NO, N\(_2\)O or HONO signals was not affected notably by the NO\(_2\) concentrations. According to the results obtained from experimental measurements, the heterogeneous uptake on mineral dust surface was assumed to mainly take place through physical adsorption.

There have been a number of studies concerning the uptake of NO\(_2\) on different surfaces or materials. Very often substances that are components of crustal material are used, such as Al\(_2\)O\(_3\), Fe\(_2\)O\(_3\), MgO, CaO and SiO\(_2\) (Angelini et al., 2007;
Baltrusaitis et al., 2007; Goodman et al., 1998; Grassian, 2001; Joel Gustafsson et al., 2006; Li et al., 2010; Liu et al., 2012; Miller and Grassian, 1998; Ndour et al., 2008; Szanyi et al., 2007; Underwood et al., 1999; Wu et al., 2013; Zhang et al., 2012). Furthermore, natural dust samples were also studied (Guan et al., 2014; Ndour et al., 2009; Ullerstam et al., 2003; Underwood et al., 2001b). The uptake coefficients of NO₂ on mineral aerosols are summarized in Table 2. One such study investigated the uptake of NO₂ and reported uptake coefficients of the order of 10^{-6} on China Loess and Saharan sand (Underwood et al., 2001b).

Wang et al. (2012) investigated the heterogeneous reactions of NO₂ on soils collected from Dalian and Changsha over the relative humidity (RH) range of 5%–80% and temperature range of 278–328 K using a horizontal coated-wall flow tube; they reported initial uptake coefficients of the order of 10^{-7} at 297 K and RH < 5%. Consistent with previous studies, the uptake coefficients of Inner Mongolia desert dust and Xinjiang sierozem were the same order of magnitude as those for China Loess and Saharan sand; whereas, the differences in uptake coefficients from this work compared to coefficients found in the literature are likely due to the different chemical compositions and measurement conditions. It is expected that natural mineral samples with different compositions and characteristics will have different surface sites, for example quartz is the main composition in these two Chinese mineral dust samples, and the surface chemistry of SiO₂ is distinctly different from the other oxides. As shown in a previous work, the uptake coefficient for NO₂ was too low to be measured (Underwood et al., 2001b), and adsorbed water was needed if NO₂ was to react to any appreciable extent on SiO₂. In our experiments, the content of SiO₂ in the dust of Inner Mongolia desert was higher than in the dust of the Xinjiang arid region. Many studies have shown that the reactive activity of SiO₂ is lower than other oxides, and it was suggested that there would be a negative correlation between uptake coefficient and SiO₂ content. Therefore, the observed uptake coefficient of NO₂ on Xinjiang sierozem is higher than on the dust of the Inner Mongolia desert region. However, the BET area of Xinjiang sierozem is about four times larger than that of the Inner Mongolia desert dust, so that the uptake coefficients calculated using the BET areas become

![Fig. 1](image1.png)

Fig. 1 – Representative Knudsen cell data for the heterogeneous uptake of NO₂ on Inner Mongolia desert dust and Xinjiang sierozem at 298 K. QMS: quadrupole mass spectrometer.

![Fig. 2](image2.png)

Fig. 2 – Uptake coefficient (γ_{obs}) for NO₂ on Inner Mongolia desert dust and Xinjiang sierozem calculated using the geometric surface area as the effective surface area as a function of sample mass.
2.2. Effect of temperature on heterogeneous reaction of NO2 on mineral dust

The temperature dependence of the uptake coefficients of heterogeneous reactions on these mineral dust samples was further investigated over the temperature range of 258–313 K. As shown in Table 1, the initial uptake coefficients of Inner Mongolia desert dust are in the range of (1.15–1.32) × 10^{-3}, and those of Xinjiang sierozem are in the range of (4.66–4.87) × 10^{-6}. It is obvious that the initial uptake coefficients of nitrogen dioxide on the mineral dust did not change with the increase of temperature. In contrast to the findings in the current study, the rate of NO2 conversion on γ-Al2O3 increased with decreasing temperature (Wu et al., 2013). This different phenomenon observed for the dependence of the initial uptake coefficients on temperature may be due to the different substances studied.

Comparing the experimental data of nitrogen dioxide uptake on different mineral dusts in our experiments, the results showed that the uptake processes of these two Chinese mineral dust samples had similarities. Based on the low uptake of NO2, we may assume that only surface adsorption occurred. The steady state uptake coefficients of NO2 on mineral dust are so small that the consumption of NO2 on mineral dusts is limited. However, in real atmospheric conditions in the presence of H2O, O3, H2O2, some organic compounds or high relative humidity, further reaction probably occurs, such as the formation of HONO (Finlayson-Pitts et al., 2003; Li et al., 2010; Ndour et al., 2008), which causes more complex processes in the atmosphere, and the relationship between these reactants still needs more investigation.

2.3. Smog chamber experimental results

The smog chamber experiments were performed to monitor the kinetics of NO2 uptake at atmospheric pressure and room temperature in order to understand the conversion of NO2 on mineral surfaces. It is generally accepted that conversion of NO2 on surfaces is responsible for the formation of HONO. However, the type of surface on which the mechanism occurs is still under debate.

In our experiments, the potential of atmospheric production of HONO during these heterogeneous reactions was also investigated.

First, the NO2 decay rate constant on the Teflon surface of the chamber was taken into account. The decay rate of NO2 on the Teflon surface of the smog chamber was 4.05 × 10^{-5} min^{-1}. It was quite small, so the NO2 loss caused by background decay in this work was negligible. As shown in Fig. 3, when the dust was injected, the decay of NO2 concentration as a function of time for Inner Mongolia desert dust was also quite small. The uptake coefficients of NO2 were difficult to obtain, but this phenomenon also illustrated that the uptake of NO2 on mineral dust samples was reversible and limited.

At the same time, in this study a home-made long path absorption photometer was used to detect the HONO formation and decomposition processes when heterogeneous reaction of NO2 took place on Inner Mongolia desert dust. Measurement of HONO is integral to the investigation of NO2 uptake progresses on mineral dust.

Unavoidably, the heterogeneous reaction of NO2 with Teflon film can also produce HONO. The plot in Fig. 4 shows the region where HONO formation is linearly dependent on the concentration of NO2. The wall loss rate of HONO, which was about 7.18 × 10^{-4} min^{-1}, had been considered.

The concentration of NO2 in the smog chamber was about 40 ppb, which produced about 1.4 ppb HONO, so this value was the initial HONO concentration in the chamber. A total of 200 mg Inner Mongolia desert dust was injected into the smog chamber through a glass two-way valve by a zero air flush, and the HONO formation and decomposition processes were detected. Because the initial uptake coefficient of NO2 on mineral dust is not large enough, the heterogeneous consumption of NO2 was not considered, and the measurements were focused on the HONO formation and decomposition as outlined in Fig. 5. From Fig. 5, the estimated loss rate of HONO was about 0.246 min^{-1}, which was much more rapid than the HONO wall loss rate. It was found that HONO not only was produced though heterogeneous reaction on mineral dust, at the same time the dust surface also acted as a good sink for gas-phase HONO, which has the potential to be a source of OH radical. Mongolia desert dust and Xinjiang sierozem showed similar phenomena. Some observed data point to the minor importance of the HONO uptake on mineral aerosol (Fe2O3 and Arizona test dust) compared with other known sinks of HONO in the atmosphere, which are its dry deposition and photolysis in night-time and during the day (El Zein et al., 2013), while some other researchers found that a net loss of HONO to the surface was observed in the presence of reactive substrates (VandenBoer et al., 2015). It is expected that the reactive loss of HONO on the surface of mineral dust will take place in the presence of different reactive surface sites, and further study is still needed to fully understand the heterogeneous reaction process of NO2 on mineral dust.

Table 1 – Summary of the uptake coefficients (γ_BET,int) of NO2 on mineral dust at different temperatures.

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>γ_BET,int (×10^{-3}) (Inner Mongolia desert dust)</th>
<th>γ_BET,int (×10^{-6}) (Xinjiang sierozem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>258</td>
<td>–</td>
<td>4.88 ± 0.98</td>
</tr>
<tr>
<td>265</td>
<td>1.23 ± 0.23</td>
<td>–</td>
</tr>
<tr>
<td>285</td>
<td>1.32 ± 0.26</td>
<td>4.66 ± 0.93</td>
</tr>
<tr>
<td>298</td>
<td>1.32 ± 0.26</td>
<td>4.87 ± 0.97</td>
</tr>
<tr>
<td>313</td>
<td>1.15 ± 0.23</td>
<td>4.75 ± 0.95</td>
</tr>
</tbody>
</table>

Each value of γ_BET,int is the average of at least three measurements, and the error corresponds to one standard deviation (σ).

3. Conclusions and atmospheric implications

At present, atmospheric modeling studies have shown that mineral aerosol has a potentially significant role in the chemistry of the troposphere, by interacting with trace gases such as NO2 and SO2. In this study, the uptake coefficients of nitrogen dioxide on two types of Chinese mineral dust were investigated using a Knudsen cell reactor. The uptake coefficients of NO2 on these two mineral dusts are (1.32 ± 0.26) × 10^{-3} and (4.87 ± 0.97) × 10^{-6} for...
Table 2 — Summary of the uptake coefficients (γ) of NO$_2$ on mineral aerosols measured under different experimental conditions.

<table>
<thead>
<tr>
<th>Sample</th>
<th>NO$_2$ concentration</th>
<th>Method</th>
<th>Temperature (K)</th>
<th>Relative humidity</th>
<th>γ</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Al$_2$O$_3$</td>
<td>53 ppb</td>
<td>Knudsen cell</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 1.14 \times 10^{-8}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td></td>
<td>10.9–218.7 ppm</td>
<td>DRIFTS</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 2.6 \times 10^{-5}$</td>
<td>Guan et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>54.7 ppm</td>
<td>DRIFTS</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 2.5 \times 10^{-5}$</td>
<td>Guan et al. (2014)</td>
</tr>
<tr>
<td>Illuminated γ-Al$_2$O$_3$</td>
<td>100 ppb–10 ppm</td>
<td>Knudsen cell</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 5.53 \times 10^{-4}$</td>
<td>Guan et al. (2019)</td>
</tr>
<tr>
<td></td>
<td>500 ppb</td>
<td>DRIFTS</td>
<td>299</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 1.3 \times 10^{-9}$</td>
<td>Börensen et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>35 ppm</td>
<td>DRIFTS</td>
<td>299</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 2.6 \times 10^{-4}$</td>
<td>Börensen et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>53 ppm</td>
<td>Knudsen cell</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 2.0 \times 10^{-4}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRIFTS</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 1.8 \times 10^{-4}$</td>
<td>Wu et al. (2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250–318</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Fe$_2$O$_3$</td>
<td>100 ppb–10 ppm</td>
<td>Knudsen cell</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 7 \times 10^{-7}$</td>
<td>Underwood et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>53 ppm</td>
<td>Knudsen cell</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 7.7 \times 10^{-6}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>γ-Fe$_2$O$_3$</td>
<td>53 ppm</td>
<td>Knudsen cell</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 4.0 \times 10^{-6}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>100 ppb–10 ppm</td>
<td>Knudsen cell</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 1.3 \times 10^{-7}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td></td>
<td>53 ppm</td>
<td>Knudsen cell</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 2.3 \times 10^{-8}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>Illuminated TiO$_2$</td>
<td>1 ppm</td>
<td>AFT</td>
<td>298</td>
<td>15%</td>
<td>$\gamma = 9.6 \times 10^{-4}$</td>
<td>Joel Gustafsson et al. (2006)</td>
</tr>
<tr>
<td>Illuminated TiO$_2$</td>
<td>1 ppm</td>
<td>AFT</td>
<td>298</td>
<td>80%</td>
<td>$\gamma = 1.2 \times 10^{-4}$</td>
<td>Joel Gustafsson et al. (2006)</td>
</tr>
<tr>
<td>TiO$_2$/SiO$_2$</td>
<td></td>
<td>CWFT/LOPAP</td>
<td>295</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 5.3 \times 10^{-5}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>Illuminated TiO$_2$/SiO$_2$</td>
<td></td>
<td>CWFT/LOPAP</td>
<td>295</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 1.0 \times 10^{-6}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>MgO</td>
<td>53 ppm</td>
<td>Knudsen cell</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 2.2 \times 10^{-3}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>CaO</td>
<td>53 ppm</td>
<td>Knudsen cell</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 2.5 \times 10^{-9}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>2.3 ppm</td>
<td>DRIFTS</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 8.1 \times 10^{-8}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>36 ppm</td>
<td>DRIFTS</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 2.3 \times 10^{-6}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>Pyrophyllite</td>
<td>120 ppm</td>
<td>DRIFTS</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 7 \times 10^{-9}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>Arizona test dust</td>
<td>3.7–10.2 ppm</td>
<td>CWFT/LOPAP</td>
<td>295</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 2.2 \times 10^{-5}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>Na-montmorillonite</td>
<td>3.7–10.2 ppm</td>
<td>DRIFTS</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 2.5 \times 10^{-9}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>China Loess</td>
<td>53 ppm</td>
<td>Knudsen cell</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 1.3 \times 10^{-4}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>Sahara sand</td>
<td>53 ppm</td>
<td>Knudsen cell</td>
<td>298</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 1.2 \times 10^{-6}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td></td>
<td>4.1 ppm</td>
<td>Knudsen cell/DRIFTS</td>
<td>295</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 6.2 \times 10^{-7}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25%</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 8.9 \times 10^{-9}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>Dalian soils</td>
<td>50–500 ppb</td>
<td>CWFT</td>
<td>278–328</td>
<td>5%–80%</td>
<td>$\gamma_{\text{ss,BET}} = 4.2 \times 10^{-6}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>Changsha soils</td>
<td>50–500 ppb</td>
<td>CWFT</td>
<td>278–328</td>
<td>5%–80%</td>
<td>$\gamma_{\text{ss,BET}} = 5.53 \times 10^{-9}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 9.14 \times 10^{-8}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>Inner Mongolia desert dust</td>
<td>15–50 ppb</td>
<td>Knudsen cell</td>
<td>258–313</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 1.15 \times 10^{-3}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
<tr>
<td>Xinjiang sierozem</td>
<td>15–50 ppb</td>
<td>Knudsen cell</td>
<td>258–313</td>
<td></td>
<td>$\gamma_{\text{ss,BET}} = 4.66 \times 10^{-6}$</td>
<td>Underwood et al. (2001b)</td>
</tr>
</tbody>
</table>

DRIFTS: diffuse reflectance infrared Fourier transform spectroscopy; AFT: aerosol flow tube; CWFT/LOPAP: coated wall flow tube reactor/long path absorption photometer.

$\gamma_{\text{ss,BET}}$: initial BET uptake coefficient; $\gamma_{\text{ss,BET}}$: steady state uptake coefficient; γ_{i}: initial uptake coefficient.

Inner Mongolia desert dust and Xinjiang sierozem respectively at 298 K and dry conditions. In agreement with a previous study on NO$_2$ uptake on China loess, uptake coefficients on Chinese mineral dust uptake are mainly on the order of 10^{-6}. Moreover, it is important to view the data presented in our experiments as lower limits of the initial uptake coefficients. In addition, the temperature had little effect on the initial uptake coefficients for these two kinds of Chinese mineral dust.

In contrast to the previously used methods, the Knudsen cell reactor enables the detection of low concentrations, so this process can now be studied under atmospherically relevant concentrations. The rate of removal of nitrogen dioxide by uptake onto mineral dust can be estimated using a simple model. The lifetime of nitrogen dioxide due to uptake onto Inner Mongolia desert dust and Xinjiang sierozem can be estimated by:

$$\tau = \frac{4}{\gamma A}$$

where A (cm2/cm3) is the dust surface area density, τ is the mean molecular speed, and γ is the uptake coefficient. Because BET
areas are applicable for calculating the uptake coefficients, here we use them as dust surface areas. If we assume a conservatively low dust loading of 5 μg/m³ to a high dust loading of 600 μg/m³ (Aymoz et al., 2004; Guo et al., 2013; Li et al., 2012), we obtain $A \approx 2.5 \times 10^{-5}$ to 3×10^{-3} m²/m³ for Inner Mongolia desert dust and $A \approx 1.05 \times 10^{-4}$ to 1.26×10^{-2} m²/m³ for Xinjiang sierozem. Our measured uptake coefficients are about $(1.32 \pm 0.26) \times 10^{-5}$ and $(4.87 \pm 0.97) \times 10^{-6}$ for Inner Mongolia desert dust and Xinjiang sierozem, respectively, which lead to the corresponding atmospheric lifetimes with respect to processing by Inner Mongolia desert dust and Xinjiang sierozem of 3.2 to 381.2, and 2.1 to 246.0 days, respectively. The uptake coefficients calculated based on the BET surface area of the dust samples represent a lower limit. As for the Arizona test dust, the BET surface area is about 4 times larger compared with the geometric area (Wagner et al., 2009), which may cause γ_{BET} to be a factor of 4 smaller than that calculated based on the geometric surface area. This gap should also be taken into account in the box model study, which would cause an underestimation of NO₂ transformation. When sand storms occur, the surface mass aerosol concentrations may reach a peak of 3000 μg/m³ (Li et al., 2012). In that case, the interaction between mineral aerosol and nitrogen dioxide can dramatically influence the concentration of nitrogen dioxide in the atmosphere, and the dust surface can also be a night-time sink of nitrous acid at the same time.

In conclusion, it should be noted that although the NO₂ reaction with mineral dust has a limited atmospheric impact, the kinetic and especially product data from the present study has the potential to be very useful and should be accounted for in laboratory studies of potential heterogeneous sources and consumption of nitrous acid.

Acknowledgments

This project was supported by the National Basic Research Program (973) of Ministry of Science and Technology of China (No. 2011CB403401), the National Natural Science Foundation of China (Nos. 21190052, 41173112, and 41475114), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (No. XDB05010400).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jes.2015.05.017.

REFERENCES

