Assessing the effects of surface-bound humic acid on the phototoxicity of anatase and rutile TiO₂ nanoparticles in vitro

Xiaojia He¹, Sabrieon Sanders², Winfred G. Aker³, Yunfeng Lin⁴, Jessica Douglas⁵, Huey-min Hwang¹,*

1. Department of Biology, Jackson State University, Jackson, MS, USA
2. Department of Biological Sciences, Alcorn State University, Lorman, MS, USA
3. Environmental Science Ph.D. Program, Jackson State University, Jackson, MS, USA
4. Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
5. School of Polymers and High Performance Materials, The University of Southern Mississippi, Hattiesburg, MS, USA

ARTICLE INFO

Article history:
Received 18 March 2015
Revised 17 May 2015
Accepted 22 May 2015
Available online 1 September 2015

Abstract

In this study, the cytotoxicity of two different crystal phases of TiO₂ nanoparticles, with surface modification by humic acid (HA), to Escherichia coli, was assessed. The physicochemical properties of TiO₂ nanoparticles were thoroughly characterized. Three different initial concentrations, namely 50, 100, and 200 ppm, of HA were used for synthesis of HA coated TiO₂ nanoparticles (denoted as A/RHA50, A/RHA100, and A/RHA200, respectively). Results indicate that rutile (LC₅₀ (concentration that causes 50% mortality compared to the control group) = 6.5) was more toxic than anatase (LC₅₀ = 278.8) under simulated sunlight (SSL) irradiation, possibly due to an extremely narrow band gap. It is noted that HA coating increased the toxicity of anatase, but decreased that of rutile. Additionally, AHA50 and RHA50 had the biggest differences compared to uncoated anatase and rutile with LC₅₀ of 201.9 and 21.6, respectively. We then investigated the formation of reactive oxygen species (ROS) by TiO₂ nanoparticles in terms of hydroxyl radicals (·OH) and superoxide anions (O₂⁻). Data suggested that O₂⁻ was the main ROS that accounted for the higher toxicity of rutile upon SSL irradiation. We also observed that HA coating decreased the generation of ·OH and O₂⁻ on rutile, but increased O₂⁻ formation on anatase. Results from TEM analysis also indicated that HA coated rutile tended to be attached to the surface of E. coli more than anatase.

© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
Published by Elsevier B.V.

Keywords:
TiO₂ nanoparticles
Escherichia coli
Humic acid
Crystallinity
Surface coating

Abbreviations

SSL: simulated sunlight irradiation
ROS: reactive oxygen species
·OH: hydroxyl radicals
O₂⁻: superoxide anions

Introduction

Titanium dioxide (TiO₂) nanoparticles are the most widely used photocatalyst for environmental remediation (Chen and Mao, 2007; Kwon et al., 2008), particularly in natural aquatic environments. However, recent studies have raised the concerns over the potential health risks to humans and environments caused by nano TiO₂ throughout its life cycle (Boxall et al., 2007; Sharma, 2009; He et al., 2014b). The behavior and fate of TiO₂ nanoparticles can be altered by suspended solids and dissolved organic matter (DOM), once they are released into aquatic environments. In addition, the lack of knowledge of nano-bio-eco interactions could limit the use of TiO₂ nanoparticles for field applications. Therefore, it is imperative that their

http://dx.doi.org/10.1016/j.jes.2015.05.028
1001-0742/© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
physicochemical properties be assessed by conducting feasibility studies before we employ such nanotechnology for environmental remediation.

In general, unmodified TiO₂ nanoparticles can only be excited by UV light, owing to their large band gap (theoretically 3.0 eV for rutile and 3.2 eV for anatase). However, TiO₂ nanoparticles can be sensitized through specific photosensitizers, for instance, dyes (Persson et al., 2000; De Angelis et al., 2007). Recently, humic acid (HA) has also been suggested to be capable of serving as a photosensitizer in HA/TiO₂/visible light system (Selli et al., 1999; Cho and Choi, 2002; Ryu and Choi, 2004). The supplementation with HA essentially expands the applicability of TiO₂ as a photocatalyst into visible light region. In addition, TiO₂ nanoparticles on most occasions, tend to aggregate in aqueous solutions and exist as aggregates, normally over 1 μm. Appreciably, surface coating can largely improve the stability and dispersibility of TiO₂ nanoparticles in aqueous solutions. Thus, lately, the physicochemical properties of HA coated TiO₂ nanoparticles have been studied and reported (Yang and Xing, 2009; Chen et al., 2012). Besides the expanded spectrum of light excitation, HA coated TiO₂ nanoparticles may also differ from the uncoated TiO₂ nanoparticles in the presence of free HA (Lin et al., 2012). It was reported that HA coating could reduce the adhesion of TiO₂ nanoparticles to algal cells, decrease the formation of reactive oxygen species (ROS), and consequently alleviate the algal toxicity (Lin et al., 2012). It was reported that oxidative deoxyribonucleic acid (DNA) damage and toxicity to zebrafish (Danio rerio) were increased by the supplement of HA to TiO₂ nanoparticles in the absence of light irradiation (Yang et al., 2013). Thus, it is necessary to investigate the alteration of physicochemical properties of TiO₂ nanoparticles coated with HA and to assess the effects on the subsequent nanotoxicity in the presence of sunlight or only visible light.

Furthermore, the effect of crystallinity has also been suggested to be attributed to the different toxicological profiles of TiO₂ nanoparticles. It is generally recognized that anatase is more active and toxic than rutile under UV irradiation. According to Luttrell et al. (2014), this is owing to the larger band gap of anatase. Under UV irradiation, anatase TiO₂ nanoparticles could generate higher amounts of ROS intracellularly and extracellularly than the rutile phase (Chen et al., 2007; Guichard et al., 2012). However, this could be altered or even reversed under visible light irradiation, or in the absence of light, as substantiated by the reports (Sayes et al., 2006; Lipovsky et al., 2012; Numano et al., 2014). Notably, ROS formation in water suspensions of TiO₂ was much higher in rutile than anatase after visible light illumination (400–800 nm, 40 mW/cm²) (Lipovsky et al., 2012). They suggested that the difference between anatase and rutile under visible illumination might be owing to a difference in their band-gap energies (Eg), in which Eg (anatase) = 3.2 eV (387 nm), and Eg (rutile) = 3 eV (415 nm). On the basis of the above consideration, it is important to investigate how the photoactivity and toxicity differ with crystallinity under sunlight irradiation.

In this study, we synthesized HA coated TiO₂ nanoparticles in both rutile and anatase phases. We investigated their toxicity to Escherichia coli (E. coli) under simulated sunlight (SSL) irradiation. To the best of our knowledge, no study has been reported to have specifically investigated the effect of surface-bound HA on the physicochemical properties and toxicity of TiO₂ nanoparticles to living organisms.

1. Materials and methods

1.1. Materials

TiO₂ nanoparticles (Sample A and Sample B) were purchased from US Research Nanomaterials, Inc. (US Research Nanomaterials, Inc., Houston, TX, USA). All organic solvents and the humic acid (>99%) used in this study were purchased from Sigma Aldrich (Sigma-Aldrich Co., St. Louis, MO, USA). All solutions were prepared using nanopure water (Thermo Scientific™ NERL™ Reagent Grade Water, NERL Diagnostics LLC, East Providence, RI, USA). Bacteria E. coli (ATCC#25254) was purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA).

1.2. Preparation of HA coated TiO₂

The steps of synthesis of HA coated TiO₂ followed the previous description of (Yang and Xing, 2009) with slight modifications. Briefly, 1 g of TiO₂ (Sample A or Sample B) was added into 100 mL of HA solution to reach the different final concentrations of 50, 100, and 200 ppm. After stirring for 2 day at 180 r/min, the mixture was then centrifuged at 5000 ×g for 30 min and washed three times with nanopure water to eliminate any unbounded HA residues. The pellet was collected after removing the supernatant, and freeze-dried. Lyophilization was then conducted under vacuum at 0.014 mbar for 48 hr with a Labconco Freezezone Plus 2.5 L Benchtop Cascade Freeze Dry Systems (Labconco, USA) equipped with a Welch 8912Z-02 Vacuum (Welch 8912Z-02, Gardner Denver Welch Vacuum Technology Inc., USA). Samples A and B were identified by X-ray diffraction (XRD) as anatase TiO₂ and rutile TiO₂, respectively. AHA50, AHA100, and AHA200 were the products from 50, 100, and 200 ppm HA coated with Sample A (anatase TiO₂) respectively. Correspondingly, RHA50, RHA100, and RHA200 were 50, 100, and 200 ppm HA coated with Sample B (rutile TiO₂), respectively.

1.3. Characterization

The characterization of HA coated TiO₂ nanoparticles was conducted with XRD, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, dynamic light scattering (DLS), and phase analysis light scattering (PALS). The content of coated HA was determined with total organic carbon (TOC) analysis.

XRD patterns were obtained using a Rigaku D/MAX-Ultima-III diffractometer (Rigaku D/MAX-Ultima-III diffractometer, Rigaku, Japan) at room temperature with Cu Kα radiation at a tube current of 44 mA and an acceleration voltage of 40 kV. The scan ranges were 2–40° and 2–75° at a step interval of 0.1° and a scanning rate of 0.05°/min. Primary nanoparticle size was determined using a jeol, JEM 1011 electron microscope working at 100 kV (JEM 1011, Joel USA, Inc., USA) equipped with a Gatan camera model 785. Morphology of TiO₂ and variation of growth for synthesized HA coated TiO₂ were
also studied using a SEM (SIGMA VP, Carl Zeiss, Germany) operating at 10 kV at a working distance of 3.3–3.7 mm. The elemental composition of the nanocomposite was studied using EDX with a Thermo Scientific Ultra Dry EDS Detector (Thermo Scientific, USA) operating at 20 kV.

Uncoated TiO₂ and the HA-coated variants were also characterized by FT-IR using a Nexus 870 FTIR spectrometer (Nexus 870, Thermo-Nicolet, USA). Absorbance spectra of the tested TiO₂ were measured using a UV–Vis spectrophotometer (UV-2600, Shimadzu, Japan). The hydrodynamic size and zeta potential values of the tested TiO₂ at 100 ppm in nanopure water were obtained via DLS and PALS, respectively, using a Malvern Zetasizer Nano (Malvern Instruments Ltd, UK). Nanoparticle suspension was sonicated (FS30, Fisher Scientific, USA) in water for 30 min and kept in dark until use. The stock solution was sonicated for 10 min prior to experimentation. The pH adjustment of PALS was achieved by the addition of 0.025 mol/L HCl or 0.025 mol/L NaOH solution.

TOC was analyzed using an Elementar Combustion Instrument (Vario Macro CNS, Elementar, Germany). Approximately a 70 to 80 mg sample was dropped into a combustion chamber where it was consumed at 1150°C; the post-combustion temperature was 800°C, and the reduction tube was at 850°C. Once combustion took place, the gases were swept sequentially to a thermoconductivity (TC) detector by Helium gas at 499 mL/min. Nitrogen was measured immediately while the carbon and sulfur gases were adsorbed onto their respective columns and released to the TC detector, carbon first, and then sulfur. Initial combustion was carried out with an injection of oxygen, first at stage 1 for 30 sec at 30 mL/min, and then at stage 2 for 120 sec at 100 mL/min.

1.4. Cytotoxicity test

The TiO₂ stock solutions (1000 ppm) used in this study include anatase, AHA50 and AHA200, rutile, RHA50 and RHA200. The stock solutions were autoclaved to eliminate any contaminant microorganisms, allowed to cool to room temperature, then used immediately for the cytotoxicity tests. The effect of autoclaving on the physicochemical properties and toxicity of TiO₂ was also evaluated. No significant difference was observed with regard to the effect of autoclaving (data not shown). All stock solutions were sonicated (FS30, Fisher Scientific, USA) for 30 min prior to adding them to make the working solution. It was reported that sonication of nanoparticles has a minimal effect on particle surface charge. Sonication has been utilized to facilitate particle dispersion and solution mixture (Warheit, 2008).

Cytotoxicity testing was performed by inoculating bacterial cells on Miller Luria-Bertani Broth (LB) agar plates after treatment with TiO₂ solutions of various concentrations. An inoculation loop of E. coli suspension was introduced into LB nutrient broth and cultured overnight at 37°C. Following incubation, the culture was washed three times with sterilized physiological saline (0.8% W/V) in a centrifuge (Eppendorf Centrifuge 5810 R, Eppendorf AG, Germany) at 4°C and 1735 × g for 10 min. The bacterial suspensions were diluted (10⁻¹ × dilution factor) and exposed to the TiO₂ in quartz test tubes (ACE Glass Inc., Louisville, USA). Subsequently, they were then exposed to simulated sunlight for 1 hr with stirring. A PMA 2100 radiometer (PMA 2100, Solar Light Co., USA) equipped with UVA probe PMA 2110 and visible light probe PMA 2130 (PMA 2130, Solar Light Co., USA) was used to measure the light intensity during exposure (visible light: average 22.95 ± 0.16 W/m², total in 1 hr 83.70 kJ/m²; UVA: average 0.18 ± 0.00 mW/cm², total in 1 hr 0.70 J/cm²). Dark exposure was also conducted in quartz tubes and wrapped in aluminum foil to prevent light illumination.

After exposure, 100 μL aliquots of the samples were spread on respective LB agar and then placed in an incubator at 37°C for 24 hr. LC₅₀ (concentration that causes 50% mortality compared to the control group) was then calculated (Cook et al., 2010).

1.5. Assessment of ROS formation

1.5.1. Hydroxyl radicals (OH)

Hydroxyl radical (·OH) generation by TiO₂ nanoparticles was quantified by fluorescence spectroscopy using terephthalic acid (Ishibashi et al., 2000; Yu et al., 2009). Owing to its high sensitivity and reliability, terephthalic acid is able to specifically react with ·OH, producing fluorescent 2-hydroxyterephthalic acid. Briefly, TiO₂ solution was added into 5 mL of 5 × 10⁻⁴ mol/L terephthalic acid with NaOH at 2 × 10⁻³ mol/L. The mixture was then stirred in the dark for 2 hr to reach equilibrium. After that, the solution was immediately exposed to simulated sunlight irradiation for 1 hr. Prior to fluorescence spectroscopy, the reaction mixture was filtered through a membrane filter (pore size 0.22 μm, diameter 13 mm, polystyrene and polyethylene terephthalate (PVPDF, Fisher Sci., USA). Fluorescence intensity was measured at 425 nm (scanned from 350 to 600 nm with 1 nm slit) excited by 315 nm light with a Horiba Scientific Fluoromax-4 spectrofluorometer (Horiba Jobin Yvon Inc., USA) equipped with a NanoLED pulsed diode light source.

1.5.2. Superoxide (O₂⁻)

The formation of superoxide (O₂⁻) was detected by using a nitro blue tetrazolium (NBT) assay. Superoxide ions can reduce NBT to insoluble purple formazan (Goto et al., 2004). Briefly, TiO₂ samples of various concentrations were added into 5 mL solutions of 0.1 mmol/L NBT in quartz test tubes. The respective mixtures were then stirred thoroughly and exposed to simulated sunlight for 1 hr under stirring. Subsequently, 0.22 μm PVDF membrane filters were used to filter out precipitates prior to UV–Vis spectroscopy. The generation of O₂⁻ was quantified by measuring the reduction of NBT at 260 nm. The final solutions containing NBT were diluted twofold in order to reach an optimal optical reading. Accordingly, results were multiplied by two for quantitation.

1.6. TEM analysis of nano-bio interactions

Bacterial suspension was prepared for TEM measurements. For observing attachment of nanoparticles, a 20 μL aliquot of treated bacterial suspension was spread onto a TEM copper grid (CF300-Cu, Electron Microscopy Sciences, USA). After drying out at ambient temperature, TEM micrographs were captured and analyzed using a Joel, JEM 1011 electron microscope working at 100 kV (JEM 1011, Joel USA, Inc., USA) equipped with a Gatan camera model 785.
1.7. Statistical analysis

Data in triplicate were presented as mean ± standard deviation (SD). The data were subjected to statistical analysis by one-way analysis of variance (ANOVA) followed by Tukey’s method for multiple comparisons. Values of $p < 0.05$ and $p < 0.01$ were considered significant and extremely significant, respectively. The statistical analyses were performed using SAS 9.2 statistical program (SAS Institute, Cary, NC, USA).

2. Results and discussion

2.1. Physicochemical properties of TiO$_2$ nanoparticles

The X-ray diffraction pattern of the TiO$_2$ nanoparticles used in this study is shown in Fig. 1 and the peak details are in Table S1. Our experimental XRD pattern agrees with the JCPDS 71-1166 (anatase TiO$_2$) and JCPDS 72-1148 (rutile TiO$_2$), and the XRD pattern of TiO$_2$ nanoparticles reported in other literature (Kavei et al., 2011). 2θ at peak 25.2 and 27.5° confirms the TiO$_2$ anatase and rutile structures, respectively. It is noted that the XRD patterns in Fig. 1 indicate that both Samples A and B were crystalline and broad diffraction peaks suggesting small sized crystallite. XRD patterns suggested that Sample A and Sample B were 100% anatase and 100% rutile TiO$_2$, as shown in Fig. 1a and b, respectively.

The UV-Vis absorption spectra of the tested nanoparticles are shown in Fig. 2a and b. It is seen that the HA coating on rutile TiO$_2$ resulted in a reduction in photo-absorption. However, the HA coating on anatase increased the light absorbance of TiO$_2$. The band-gap energies of the TiO$_2$ variants can be estimated from the plots of the photon energy and the results are shown in Fig. 2c and d. The band gap of anatase was 3.5 and 2.31 eV, for anatase and rutile TiO$_2$, respectively. The HA coated anatase TiO$_2$ revealed new deep levels which are located at 3.2, 3.31, and 3.32 eV, for AHA50, AHA100, and AHA200, respectively. For rutile TiO$_2$, however, the HA coating resulted in an increase in the band gap to 2.68, 2.69, and 2.80 eV, for RHA200, RHA100, and RHA50, respectively. Intriguingly, it seems that the HA coating altered the band gap property of the TiO$_2$ particles. However, this change was attributed to photosensitization of HA on the surface of TiO$_2$, which will be illustrated in the next section.

Based on the measured TOC contents in the TiO$_2$/HA, it was calculated that AHA50, AHA100, and AHA200 contained 0.5% (W/W), 0.8% (W/W), and 0.8% (W/W) of HA in terms of carbon content, respectively. For HA coated rutile TiO$_2$, the HA

![Fig. 1 - XRD (X-ray diffraction) patterns of (a) Sample A and (b) Sample B TiO$_2$ used in this study.](image1)

![Fig. 2 - Light absorbance and band gap of (a) anatase TiO$_2$ nanoparticles with and without humic acid (HA) coating and (b) rutile TiO$_2$ nanoparticles with and without HA coating. (c) and (d) were the plots of $(\alpha h\nu)^2$ versus $(h\nu)$ for (a) and (b), respectively. AHA50, AHA100, and AHA200 were the products from 50, 100, and 200 ppm HA coated with Sample A (anatase TiO$_2$), and RHA50, RHA100, and RHA200 were 50, 100, and 200 ppm HA coated with Sample B (rutile TiO$_2$), respectively.](image2)
content was 0.4% (W/W), 0.8% (W/W), and 0.7% (W/W) for RHA50, RHA100, and RHA200, respectively. The linear increase of the coating percentage from HA50 to HA100 implied that HA coating on TiO2 proceeded with multilayer formation. In contrast, the data indicated that there was no significant difference between the HA coated TiO2 prepared at 100 and 200 ppm, in terms of coating percentage. This fact is in agreement with the band gap results. Thus, we chose 200 ppm HA coated TiO2 for further analysis and testing. It is noteworthy that there is no significant difference among surface coating in terms of sulfur and nitrogen (data not shown).

Furthermore, the primary size of TiO2 was revealed using TEM, as shown in Fig. 3a–f and Table 1. The TEM images show that the tested rutile and anatase TiO2 nanoparticles were in the same size range. We also found that humic acid, as a surface coating, had no significant effect on the primary size of anatase or rutile TiO2 nanoparticles. The two-dimensional (2-D) surface morphological study of the HA loaded TiO2 nanoparticles was carried out by SEM (Fig. 3g–j). The morphology and structure of the samples were further investigated by EDX spectroscopy. The elemental compositions are thus confirmed. EDX point spectra taken from the center point of TiO2 show strong Ti and O signals (Fig. 3k–n). As shown in Fig. 3l and n, N signals were also observed for HA coated TiO2. The chemical compositions of the thin films analyzed are given in Fig. S1–8.

The FTIR spectra of the tested TiO2 with and without HA coating are presented in Fig. 4. The data indicate that the observed peak of rutile TiO2 at 1639 cm$^{-1}$ shifted to 1629, 1627, and 1631 cm$^{-1}$ for RHA50, RHA100, and RHA200, respectively. As shown in Fig. 4a, absorption spectra suggest strong interactions of phenolic OH of HA with TiO2. Interestingly, RHA100 exhibited the largest shift as well as the strongest absorbance. This may be due to ligand exchange between TiO2 and HA and a larger band gap of RHA100 (Fig. 2b). A similar shift was also observed for anatase TiO2 around 1600–1700 cm$^{-1}$, as shown in Fig. 4b. In comparison with pure anatase TiO2, several continuous new peaks around 1300–1500 cm$^{-1}$ appeared after binding with HA, owing to the C = C and C = O stretch of HA, particularly, the tiny peak around 1300, 1372 and 1537 cm$^{-1}$ should be ν_{2}(C–O), ν(COO$^{-}$), and ν(COO$^{-}$). In addition, the peak of OH stretching at 3300–3500 cm$^{-1}$ may come from a different extent of ligand exchange between phenolic groups in TiO2 and HA. We also found that as the amount of HA increased, the peak at 2350–2400 became weaker, owing to the strong interactions of phenolic OH with TiO2. Compared with the ones coated with HA at 100 and 50 ppm, there is a sharp increase in the intensity of the peak of the hydroxyl group, around 3500 cm$^{-1}$, in rutile TiO2 after coating with HA at 200 ppm. This could occur as a result of the ligand exchange between hydroxyl groups on TiO2 and HA carboxyl/hydroxyl functional groups (Yang and Xing, 2009). From this observation, HA chemically bound on the surface of TiO2 nanoparticles.

In addition, hydrodynamic size and zeta potential were investigated as aspects of chemical characterization. Because of their lipophilicity, the rutile TiO2 nanoparticles form larger
aggregates in aqueous media. As shown in Fig. 4c, the coating of HA greatly reduced the size distribution of TiO₂ in aqueous solutions. It is notable that the average size was also reduced (Table 1). Correspondingly, the absolute value of the zeta potential increased at the same pH value after HA coating (Fig. 4d). Moreover, HA coating induced a shift in isoelectric point (IEP) to pH values substantially higher than its pristine IEP.

2.2. Cytotoxicity of TiO₂ to E. coli

Based on the results of viability testing with E. coli (Fig. 5) and the computed LC₅₀ values (Table 2), it is apparent that rutile TiO₂ was more toxic than anatase TiO₂. The higher toxicity may be due to the lower band-gap energy of rutile TiO₂ and consequent better light absorbance in visible light compared to that of anatase TiO₂ (Fig. 2). The change in light absorption is consistent with cytotoxicity test results, while being bi-directional in this property with the increase in HA coating degree. It is widely reported that anatase is more toxic than rutile in the presence of UV light irradiation, while it is less toxic than rutile in the absence of light (Numano et al., 2014). Owing to the larger band gap of anatase in comparison to rutile, it tends to be more active under UV light (Kakinoki et al., 2004; Tayade et al., 2007). In this study, neither anatase nor rutile exhibited toxicity to E. coli in the dark (data not shown).

Table 1 – Characterization of TiO₂ with and without humic acid (HA) coating.

<table>
<thead>
<tr>
<th>Nanoparticles</th>
<th>Anatase</th>
<th>AHA50</th>
<th>AHA200</th>
<th>Rutile</th>
<th>RHA50</th>
<th>RHA200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary size (nm)</td>
<td>25.1 ± 5.7</td>
<td>31.4 ± 5.4</td>
<td>22.9 ± 8.3</td>
<td>34.5 ± 4.5</td>
<td>28.1 ± 5.3</td>
<td>30.6 ± 4.5</td>
</tr>
<tr>
<td>Primary size distribution (nm)</td>
<td>11.5–32.5</td>
<td>25.5–42</td>
<td>13.5–41</td>
<td>28–42</td>
<td>20.5–33</td>
<td>24–35.5</td>
</tr>
<tr>
<td>Hydrodynamic size (z-average, nm)</td>
<td>1285.0</td>
<td>554.6</td>
<td>526.1</td>
<td>2282.1</td>
<td>635.7</td>
<td>634.4</td>
</tr>
<tr>
<td>Zeta potential (mV) at pH 7.0</td>
<td>−22.8</td>
<td>−24</td>
<td>−25</td>
<td>−24.5</td>
<td>−28</td>
<td>−25</td>
</tr>
<tr>
<td>Isoelectric point (IEP)</td>
<td>3.9</td>
<td>4.6</td>
<td>4.9</td>
<td>4.1</td>
<td>4.3</td>
<td>5.7</td>
</tr>
</tbody>
</table>

AHA50 and AHA200 were the products from 50 and 200 ppm HA coated with Sample A (anatase TiO₂), and RHA50 and RHA200 were 50 and 200 ppm HA coated with Sample B (rutile TiO₂), respectively.

Fig. 4 – FTIR for (a) rutile and (b) anatase TiO₂ with and without HA coating, and (c) hydrodynamic size distribution and (d) zeta potential of TiO₂. FTIR: Fourier transform infrared spectroscopy; HA: humic acid.
contribute to their distinct performance in causing toxicity to big difference between uncoated anatase and rutile did not
tively. The LC50 values of AHA50 and RHA50 decreased by
differences compared to uncoated anatase and rutile, respec-
results suggested that AHA50 and RHA50 had the biggest
but decreased the toxicity of rutile. Additionally, the alteration
on the phototoxicity of TiO2 (\[\text{TiO}_2\]) suggesting that there is a threshold
anatase, resulting in expanded light absorption and increased
band gap properties in Fig. 2. The lower coating percentage of
27.6% and 332%, respectively. This pattern is consistent with
disagree with some published data (Sayes et al., 2006;
Braydich-Stolle et al., 2009). However, differences in the light
conditions used in the aforementioned studies account for the
variances, owing to the extremely low band gap of rutile used
in this study. It should be noted that the aggregation state of
TiO2 nanoparticles may alter their ultimate bioavailability. In
the present study, there was no notable difference in the
extent of aggregation among the HA coated TiO2. Hence, the
big difference between uncoated anatase and rutile did not
contribute to their distinct performance in causing toxicity to
E. coli, indicating that the bioavailability may not be the major
factor for causing higher toxicity by rutile.

In addition to crystallinity, our statistical analysis indicates
that surface coating with HA exhibited significant impact
on the phototoxicity of TiO2 (\(p < 0.05\), Table 3). It is apparent
that surface coating of HA increased the toxicity of anatase,
but decreased the toxicity of rutile. Additionally, the alteration
of toxicity was related to the percentage of HA coating. The
results suggested that AHA50 and RHA50 had the biggest
differences compared to uncoated anatase and rutile, respectiv-
ely. The LC50 values of AHA50 and RHA50 decreased by
27.6% and 332%, respectively. This pattern is consistent with
band gap properties in Fig. 2. The lower coating percentage of
HA tended to increase the band gap of rutile more intensively,
leading to a subsequent narrowing of the light absorption
band and decreased phototoxicity. However, the lower coating
percentage of HA was more capable of lowering band gap of
anatase, resulting in expanded light absorption and increased
phototoxicity. This change suggests that there is a threshold
coating percentage for altering the photoreactivity and subse-
quent phototoxicity of TiO2.

It was reported that co-exposure to TiO2 nanoparticles and
HA under simulated sunlight could significantly increase oxidative
damage and subsequent toxicity in developing zebrafish
(Bar-Ilan et al., 2012; Yang et al., 2013). Additionally, it was
suggested that HA could act as both donor and acceptor of
electrons to and from the TiO2 conduction band (CB), without
undergoing mineralization (Cho and Choi, 2002). Therefore, we
propose a hypothesis for this particular alteration, as present-
ed in Fig. 6. In this system, HA as a sensitizer is firstly activated
by visible light irradiation and subsequently, electrons are
injected into the CB of TiO2. The injected electrons then migrate
from the lattice to the surface of TiO2 where they participate
in redox reactions with O2, leading to the generation of superoxide
(\(\text{O}_2^-\)). As an acceptor of electrons, HA also accepts electrons from the solution redox couple, making a looping
cycle (Meyer, 1997). In addition, HA also serves as hole scav-
enger that enhances the production of superoxide (Selli et al.,
1999; Ryu and Choi, 2004). It was reported that hydroxyl
radicals (OH) could react with HA, leading to the formation of
humic acid radicals (Wang et al., 2000; Westerhoff et al., 2007).
Thus, the surface coating of HA could alter the light absorption
property of TiO2 nanoparticles. Based on this hypothesis, we
can expect that in this study, there will be increased super-
oxide formation, and decreased of OH. It is true so far, for
anatase TiO2. However, the story is slightly different with
rutile. The rutile in our experiment had an extremely small
band gap, making it sensitive to visible light. It is noteworthy
that only a partial visible spectrum (up to 500 nm, correspond-
ing to a band gap of 2.48 eV) is responsible for the light-
induced ROS in TiO2 nanoparticles (Lipovsky et al., 2012). Thus,
the low band gap of rutile may not contribute to ROS produc-
ton any further below 2.48 eV. The coating of HA essentially
blocked the light absorption of rutile, while HA per se still could
be activated by visible light as a sensitizer and a hole scavenger.
It was reported that \(\text{O}_2^-\) was the dominant ROS in rutile
upon visible light illumination (Lipovsky et al., 2012). This
fact may cause a decrease in the generation of OH and \(\text{O}_2^-\)
on rutile. The coating of HA at a certain percentage may
achieve a maximum interference with light absorption of TiO2,
resulting in a balance of light activation-blocking. In this
study, 0.4%–0.5% HA coating on TiO2 could greatly increase the

Table 2 – LC50 of TiO2 nanoparticles to Escherichia coli.

<table>
<thead>
<tr>
<th>Nanoparticles</th>
<th>Anatase</th>
<th>AHA50</th>
<th>AHA200</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC50 (ppm)</td>
<td>278.8</td>
<td>201.9</td>
<td>221.9</td>
</tr>
<tr>
<td>R²</td>
<td>0.9295</td>
<td>0.9078</td>
<td>0.9969</td>
</tr>
<tr>
<td>Nanoparticles</td>
<td>Rutile</td>
<td>RHA50</td>
<td>RHA200</td>
</tr>
<tr>
<td>LC50 (ppm)</td>
<td>6.5</td>
<td>21.6</td>
<td>6.7</td>
</tr>
<tr>
<td>R²</td>
<td>0.8603</td>
<td>0.8535</td>
<td>0.9880</td>
</tr>
</tbody>
</table>

LC50: concentration that causes 50% mortality compared to the control group.

Fig. 5 – Viability of Escherichia coli (E. coli) after exposure to (a) anatase and (b) rutile TiO2 under simulated sunlight.
photoactivity of anatase, while largely decreasing that of rutile. This hypothesis was then tested with the following investigations on the production of superoxide and hydroxyl radicals upon light activation.

Upon light excitation, excited HA (HA*) transfers electrons (e^-) into the conduction band (CB) of TiO$_2$. Meanwhile, e^- also transfer back to oxidized HA (HAox), making a looping cycle. Subsequently, injected e^- lead to the formation of superoxide (O_2^-). Hydroxyl radicals ($\cdot OH$) react with HA, resulting in the generation of humic acid radicals (HA•), which further promote the production of O_2^-.

The production of O_2^- was then measured for further elaboration. As shown in Fig. 8, it was found that the generation of O_2^- by RHA50 and RHA200 decreased slightly, by 2.9% and 0.2%, respectively, compared to uncoated rutile at 10 ppm. The rutile, there was an increase in the O_2^- formation by AHA50 and AHA200 by 2.6% and 1.5%, respectively, compared to uncoated anatase at 10 ppm. Although the change in the percentage (%) value was slight, the statistical difference was significant for both anatase and rutile ($p < 0.05$). This also explicitly agrees with our hypothesis.

2.4. TEM analysis of nanoparticles—E. coli interaction

The direct contact between nanoparticles and bacteria has been recognized as an important mechanism in causing

Fig. 6 – Simulated sunlight-induced HA sensitization and hole scavenging on TiO$_2$. HA*: excited HA; HA$_{ox}$: oxidized HA; HA: HA radicals; CB: conduction band; VB: valence band; HA*: ionized humic acid; HA: humic acid.

Table 3 – Statistic results of viability test by different surface coating and concentration of two types of TiO$_2$.

<table>
<thead>
<tr>
<th>Source</th>
<th>Degree of freedom (DF)</th>
<th>Type I SS (sum of squares)</th>
<th>Mean square</th>
<th>F value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface coating</td>
<td>2</td>
<td>465.85</td>
<td>232.93</td>
<td>5.25</td>
<td>0.0160</td>
</tr>
<tr>
<td>Concentration</td>
<td>2</td>
<td>2792.07</td>
<td>1396.04</td>
<td>31.46</td>
<td><0.0001</td>
</tr>
<tr>
<td>Surface coating-concentration</td>
<td>4</td>
<td>85.48</td>
<td>21.37</td>
<td>0.48</td>
<td>0.7489</td>
</tr>
<tr>
<td>Rutile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface coating</td>
<td>2</td>
<td>2826.74</td>
<td>1413.37</td>
<td>12.59</td>
<td>0.004</td>
</tr>
<tr>
<td>Concentration</td>
<td>2</td>
<td>5380.07</td>
<td>2690.04</td>
<td>23.95</td>
<td><0.0001</td>
</tr>
<tr>
<td>Surface coating-concentration</td>
<td>4</td>
<td>1483.93</td>
<td>370.98</td>
<td>3.30</td>
<td>0.0339</td>
</tr>
</tbody>
</table>
cellular toxicity (Jiang et al., 2009). TEM micrographs of nanoparticles—E. coli interactions are shown in Fig. 9. The attachment of nanoparticles onto the surface of E. coli indicated that there were no preferred sites or arrangements. We did not observe nanoparticles forming any coating on the whole bacterial cells. Intriguingly, all HA coated nanoparticles, including both anatase and rutile, were more likely to attach to bacterial cells, though aggregates were also formed. Unlike uncoated TiO₂, the ones coated with HA were rarely found in other areas except the bacterial surface. Although the number of nanoparticles attached to the bacterial surface is hard to quantify, we noticed that there were more rutile attached to the surface of E. coli. This fact may also contribute to the higher toxicity of rutile nanoparticles.

In addition, we also investigated the attachment of TiO₂ nanoparticles onto bacteria in the presence of free HA (Fig. S9). It is clear that TiO₂ nanoparticles randomly scattered all over the grid, in the meantime, attached onto bacterial surface, suggesting that free HA didn’t enhance the attachment of nanoparticles as coated HA did. Furthermore, in our previous publication we reported that TiO₂ could pass through cell walls and penetrate the cell membrane, finally entering into the bacterial cell (Pathakoti et al., 2013) and zebrafish cells (He et al., 2014a). We also observed similar results in this study, but no significant difference between anatase and rutile. However, the damage caused by oxidative stress is not solely dependent upon cellular uptake (Heinlaan et al., 2008). Thus, the gathering and attachment of nanoparticles surrounding bacterial surfaces per se, may be powerful enough to produce ROS and induce oxidative stress, leading to cellular damage and destruction upon light irradiation.

3. Conclusion

In summary, while both types of the studied TiO₂ nanoparticles were non-toxic in the absence of light, rutile was more toxic to E. coli than anatase under SSL. Data suggested that the extreme low band gap of rutile might contribute to its higher SSL-induced activity and toxicity. Humic acid (HA) coating substantially altered the photoactivity and phototoxicity of both anatase and rutile TiO₂ nanoparticles. Clearly, surface-bound HA increased the toxicity of anatase but decreased that of rutile, and exhibited the highest impact at coating percentage of 0.4–0.5%. Analysis results of reactive oxygen species (ROS) implied that superoxide (O₂⁻) was the main ROS that accounted for higher toxicity of rutile in this study. With HA coating, a pronounced decrease of hydroxyl radicals...
(OH) and O$_2^-$ in rutile, a decrease of OH in anatase and an increase of O$_2^-$ in anatase were observed. Finally, TEM analysis revealed the attachment and invasion of nanoparticles into E. coli, with a more profound invasion by rutile. In conclusion, from the results of the present study, it is clear that the photocatalytic behavior and toxicological profile of rutile differ from that of anatase TiO$_2$ nanoparticles (~30 nm) under SSL irradiation. Studies on nano-bio-eco interactions are urgently needed, with emphases on physicochemical properties of TiO$_2$ nanoparticles and their interactions with DOM and aquatic biota.

Acknowledgments

The study is supported in part by the NSF-REU program (National Science Foundation-Research Experiences for Undergraduates, No. #CHE-1156111) and the NSF-CREST program (National Science Foundation-Centers of Research Excellence in Science and Technology, No. #HRD-0833178). We sincerely thank the technical support from Mississippi State Chemical Laboratory, Mississippi State University for TOC analysis, and School of Polymers and High Performance Materials, the University of Southern Mississippi for SEM, EDX, and XRD characterization.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jes.2015.05.028.

REFERENCES

