Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes

Han Ding, Xin Li, Jun Wang, Xiaojian Zhang, Chao Chen

State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084. E-mail: dingh09@163.com

Abstract
The adsorption of six kinds of chlorophenols on pristine, hydroxylated and carboxylated single-walled carbon nanotubes (SWCNTs) has been investigated. Pseudo-first order and pseudo-second order models were used to describe the kinetic data. All adsorption isotherms were well fitted with Langmuir, Freundlich and Polanyi–Manes models, due to surface adsorption dominating the adsorption process. The close linear relationship between log K_{ow} and log K_d suggested that hydrophobicity played an important role in the adsorption. The SWCNTs' adsorption capacity for chlorophenols was weakened by addition of oxygen-containing functional groups on the surface, due to the loss of specific surface area, the increase of hydrophilicity and the reduction of $\pi-\pi$ interaction. The best adsorption capacity of pristine SWCNTs, SWCNT-OH and SWCNT-COOH for six chlorophenols varied from 19 to 84 mg/g, from 19 to 65 mg/g and from 17 to 65 mg/g, respectively. The effect of pH on the adsorption of 2,6-dichlorophenol (2,6-DCP), was also studied. When pH is over the pK_a of 2,6-dichlorophenol (2,6-DCP), its removal dropped sharply. When ionic strength increased (NaCl or KCl concentration from 0 to 0.02 mmol/L), the adsorption capacity of 2,6-DCP on pristine SWCNTs decreased slightly. The comparison of chlorophenols adsorption by SWCNTs, MWCNTs and PAC was made, indicating that the adsorption rate of CNTs was much faster than that of PAC. The results provide useful information about the feasibility of SWCNTs as an adsorbent to remove chlorophenols from aqueous solutions.

© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Keywords: Adsorption, Chlorophenols, Single-walled carbon nanotubes, Isotherms, Kinetics, Cation–π interaction

Introduction

Chlorophenols are widely used as intermediates to produce pesticides, dyes and biocides (Colella et al., 1998; Dominguez-Vargas et al., 2009; Morenocastilla et al., 1995). The presence of chlorophenols in industrial effluents is of increasing environmental concern due to their toxicity and carcinogenicity (Okolo et al., 2000). Chlorophenols have been regulated as priority pollutants by US Environmental Protection Agency (Adam and Al-Dujaili, 2013). The disinfection of drinking water with chlorine may also produce chlorophenols in case the water resource is contaminated by phenol (Ahmaruzzaman, 2008). The existence of chlorophenols in drinking water causes unpleasant taste and odor even at concentration as low as 0.1 mg/L (Suffet et al., 1999).
Adsorption is a widely used method to remove chlorophenols from wastewater (Kuleyin, 2007). Different adsorbents, such as powdered activated carbon (PAC), zeolite and clay, have been developed and their efficiency has been extensively studied (Ahmaruzzaman, 2008; Mihoc et al., 2014; Morenocastilla et al., 1995). Carbon nanotubes (CNTs), as a new kind of adsorbent, have been proved to be very efficient in removing many organic pollutants from water (Chen et al., 2007; Iijima, 1991; Liu et al., 2013; Machado et al., 2011; Pyrzynska et al., 2007). They have large specific surface area and the ability of π–π electron coupling interaction with aromatic compounds (Ji et al., 2009; Pan and Xing, 2008; Shi et al., 2010). These characteristics make the application of CNTs in water treatment highly potential. To improve the adsorption capacity, functionalization of CNTs has attracted increasing interest (Das et al., 2014; Lu et al., 2005; Ma et al., 2011). Theoretically, the addition of oxygen-containing functional groups on the surface of CNTs can reduce the aggregation of CNT bundles, thus the available adsorption sites will increase (Pan and Xing, 2008). These functional groups also make the adsorption of polar contaminants more favorable (Liu et al., 2013). However, recent studies indicate that oxidation will depress the adsorption of some organic compounds (Cho et al., 2008; Sheng et al., 2010; Yu et al., 2014; Zhang et al., 2009).

Recently, most adsorption studies have focused on multi-walled carbon nanotubes (MWCNTs), due to their cheaper price than single-walled carbon nanotubes (SWCNTs) (Apul and Karanfil, 2015). However, SWCNTs generally have higher adsorption capacity than MWCNTs, due to their larger specific surface area (SSA) and smaller diameter (Apul and Karanfil, 2015; Pan and Xing, 2008). For example, Chen et al. (2011) found that SWCNTs have higher adsorption capacity for perfluorooctane sulfonate than MWCNTs, which is consistent with their SSA. Kim et al. (2014) found that SWCNTs have stronger ability to adsorb lincomycin, sulfamethoxazole and iopromide than MWCNTs and activated carbon. Liao et al. (2008) also found that the adsorption capacity of MWCNTs for chlorophenols was very low. In addition, no information about adsorption of chlorophenols on SWCNTs has been found, as far as the authors know. Considering these facts, the ability of SWCNTs to remove chlorophenols from aqueous solutions is worth investigating.

In the present work, we investigated the adsorption of chlorophenols on pristine and functionalized SWCNTs (hydroxylated SWCNT (SWCNT-OH) and carboxylated SWCNT (SWCNT-COOH)). The impact of surface functionalization on the adsorption of chlorophenols was analyzed. Six kinds of chlorophenols (2-CP, 4-CP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP and 2,4,6-TCP) were selected as adsorbates for the adsorption experiment. Three commonly used adsorption isotherm models (Langmuir, Freundlich and Polanyi–Manes) were applied to fit the experimental data. The kinetic study of chlorophenols on pristine SWCNTs was performed and the

<table>
<thead>
<tr>
<th>Chlorophenols</th>
<th>Structure</th>
<th>MV b (cm³/mol)</th>
<th>Cs (g/L)</th>
<th>LogKow</th>
<th>pKa</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-CP</td>
<td></td>
<td>99.8</td>
<td>2.40</td>
<td>2.220</td>
<td>8.50</td>
</tr>
<tr>
<td>4-CP</td>
<td></td>
<td>99.8</td>
<td>2.10</td>
<td>2.418</td>
<td>9.47</td>
</tr>
<tr>
<td>2,4-DCP</td>
<td></td>
<td>111.7</td>
<td>0.47</td>
<td>3.095</td>
<td>8.05</td>
</tr>
<tr>
<td>2,6-DCP</td>
<td></td>
<td>111.7</td>
<td>0.52</td>
<td>2.896</td>
<td>7.02</td>
</tr>
<tr>
<td>2,4,5-TCP</td>
<td></td>
<td>123.7</td>
<td>0.085</td>
<td>3.835</td>
<td>7.10</td>
</tr>
<tr>
<td>2,4,6-TCP</td>
<td></td>
<td>123.7</td>
<td>0.091</td>
<td>3.769</td>
<td>6.59</td>
</tr>
</tbody>
</table>

a All properties of chlorophenols were obtained from SciFinder. https://scifinder.cas.org.
b MV: molar volume.
results were analyzed with conventional theoretical methods. The effects of pH and ionic strength on the adsorption behavior of chlorophenols were studied to reveal the impact of environmental conditions. The comparison of chlorophenol adsorption by SWCNTs, MWCNTs and PAC was also made to evaluate the adsorption ability of SWCNTs. Our work may provide useful information for further research and practical applications of SWCNTs in the removal of chlorophenols from wastewater.

1. Materials and methods

1.1. Materials

2-Chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), 2,6-dichlorophenol (2,6-DCP), 2,4,5-trichlorophenol (2,4,5-TCP), and 2,4,6-trichlorophenol (2,4,6-TCP) were purchased from Sigma Aldrich. They all had purity above 98%. The selected properties of chlorophenols are listed in Table 2. Pristine SWCNT, SWCNT-OH and SWCNT-COOH were supplied by Chengdu Organic Chemicals Co., China. Their basic structural characteristics are listed in Table 2. Stock solutions were prepared by dissolving specific amount of chlorophenols in ultrapure water produced by Milli-Q Academic water purification system. They were diluted to get desirable concentrations in experiments. NaCl and KCl (Sigma Aldrich, >99.5%) were used to adjust ionic strength.

1.2. Adsorption experiments

A batch adsorption technique was conducted at 25 ± 3 °C to obtain adsorption isotherms. In each adsorption experiment, stock solutions of chlorophenols were diluted to 2 mg/L with ultrapure water in a series of 500 mL glass flasks. SWCNTs with mass ranging from 8 to 22 mg were put in each flask to contact with sample solutions. The flasks were then shaken in a self-made rotary shaker for 2 hr to reach adsorption equilibrium. The adsorption time was determined by our kinetic studies. After equilibration, the suspensions were filtered through a 0.45-μm filter membrane to remove the particles. Several 500 mL flasks were filled with 0.01 mol/L NaCl solution. The pH was adjusted to a value between 4 and 10 by addition of 0.1 mol/L HCl or 0.1 mol/L NaOH solutions. 10 mg pristine SWCNTs were added into the solution and after 4 hr the final pH was measured and plotted against the initial pH. The pH where the curve crossed the line pHinitial = pHfinal was regarded as the \(\text{pH}_{\text{pzc}} \).

1.3. Chemical analysis methods

The concentrations of chlorophenols were measured by a UV-Vis detector (UV-2700, Shimadzu, Japan). The pH values of solutions were measured by a pH meter (PB-21, Sartorius, Germany). The carbon concentrations of 2,6-DCP were measured by a total organic carbon analyzer (TOC-VCPH, Shimadzu, Japan). The concentrations of chlorophenols were measured at the beginning of each adsorption experiment. The final concentrations of chlorophenols were measured at regular time intervals. The initial concentrations of chlorophenols were measured at the beginning of experiments.

1.4. Data analysis

The amount of chlorophenols adsorbed on SWCNTs was calculated by using the following Eq. (1):

\[
q_e = \frac{(C_0 - C_e)V}{m}
\tag{1}
\]

where, \(q_e \) (mg/g) is the amount of chlorophenols adsorbed on SWCNTs, \(C_0 \) (mg/L) is the initial concentration of chlorophenols, \(C_e \) (mg/L) is the equilibrium concentration of chlorophenols, \(m \) (g) is the adsorbent mass, and \(V \) (L) is the volume of sample solution.

The pseudo-first order model (Eq. (2)) and pseudo-second order model (Eq. (3)) were used to describe the adsorption kinetic data of chlorophenols:

\[
\frac{t}{q_t} = \frac{1}{K_1 q_e^2} + \frac{t}{q_e}
\tag{2}
\]

where, \(q_e \) (mg/g) and \(q_t \) (mg/g) are the adsorbed amounts of chlorophenols at adsorption equilibrium and at time \(t \) (hr), respectively; \(K_1 \) (hr\(^{-1}\)) and \(K_2 \) (g/(mg·hr)) are the adsorption rate constants for the two kinetic models, respectively.

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Diameter (^a) (nm)</th>
<th>Length (^a) (μm)</th>
<th>BET surface area (^b) (m(^2)/g)</th>
<th>Purity (^a) (%)</th>
<th>O% (^a) (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWCNT</td>
<td>1–2</td>
<td>5–30</td>
<td>625</td>
<td>>90</td>
<td>/</td>
</tr>
<tr>
<td>SWCNT-OH</td>
<td>1–2</td>
<td>5–30</td>
<td>526</td>
<td>>90</td>
<td>3.96</td>
</tr>
<tr>
<td>SWCNT-COOH</td>
<td>1–2</td>
<td>5–30</td>
<td>552</td>
<td>>90</td>
<td>2.73</td>
</tr>
</tbody>
</table>

SWCNTs: single-walled carbon nanotubes.

\(^a\) Property data were offered by the producer.

\(^b\) BET surface area was measured by the Analytical Center of Tsinghua University using TriStar 3020 II.
The Langmuir equation (Eq. (4)), Freundlich equation (Eq. (5)), and Polanyi–Manes (PM) equation (Eq. (6)) were applied to fit the adsorption isotherms data. These three models are widely used to fit the adsorption isotherm data of different adsorbates on SWCNTs (Apul et al., 2013; Kim et al., 2014; Yang et al., 2006; Zhou et al., 2013). The Langmuir model is suitable for monolayer adsorption and the Freundlich model is commonly applied to heterogeneous adsorption (Jaroniec, 1975; Langmuir, 1918). The PM model has been reported to fit the aqueous adsorption isotherms well (Yang and Xing, 2010).

\[q_e = \frac{q_m K_L C_e}{1 + K_L C_e} \]

\[q_e = K_F C_e^n \]

\[\log q_e = \log Q + a \left(\frac{\epsilon_{sw}}{\epsilon_{sw}} \right)^b \]

\[\epsilon_{sw} = RT \ln \left(\frac{C_s}{C_e} \right) \]

where, \(q_m \) (mg/g) is the maximum adsorption amount, \(K_L \) (L/mg) is the adsorption equilibrium constant for Langmuir equation; \(K_F \) (mg\(^{1-n}\)g\(^{-1}\)L\(^n\)) is the adsorption affinity coefficient for Freundlich equation, and \(n \) indicates the nonlinearity of isotherms; \(Q \) (mg/g)
is the maximum adsorption capacity for PM equation, \(q_{wm} \text{ (k/mol)}\) is effective adsorption potential, \(V_s \text{ (cm}^3\text{/mol)}\) is molar volume of adsorbates, \(a \ ((\text{cm}^3)^b+1/(\text{kg}^b))\) and \(b\) are fitting parameters, \(R \ (8.314 \times 10^{-3}\text{kJ/(mol} \cdot \text{K})\) is universal gas constant, \(T \text{ (K)}\) is absolute temperature, \(C_s \text{ (mg/L)}\) is the solubility of adsorbates.

Single point adsorption coefficient \(K_d \text{ (L/g)}\) (Eq. (8)) was calculated based on the fitting results of Langmuir model at \(C_w = 0.002C_s\).

\[
K_d = \frac{q_e}{C_o}.
\]

(8)

2. Results and discussion

2.1. Kinetic studies

Fig. 1 shows that adsorption amount increased very quickly in the first 30 min and adsorption equilibrium was reached within 2 hr. The time needed to reach adsorption equilibrium for chlorophenols onto SWCNTs was much shorter than onto activated carbons (Colella et al., 1998; Varghese et al., 2004). The disparities of adsorption equilibrium time may be attributed to the different adsorption mechanisms between these two adsorbents. Intraparticle diffusion dominates the adsorption process of activated carbons, while SWCNTs adsorb organic compounds mainly by external mass transfer (Zhang et al., 2012).

The kinetic parameters of pseudo-first and pseudo-second order models are listed in Table 3. The pseudo-second order model fitted the kinetic data much better than pseudo-first order model with higher \(R^2\) values. Ho and McKay (1999) reported that pseudo-second order model achieved highest correlation coefficients when applied to sorption process, which is consistent with our results. The \(K_1\) and \(K_2\) values of chlorophenols with one chlorine group are much greater than those of the other chlorophenols. The higher solubility and smaller molecular volume of one-chlorine-group chlorophenols may be the reasons for the observed difference in \(K_1\) and \(K_2\) values. These properties facilitate the diffusion of molecules in water thus accelerate the adsorption process.

2.2. Adsorption isotherms

The fitting parameters of three different models are listed in Table 4. All of the three models fitted the isotherms well. There are three kinds of adsorption sites present in the closed-ended SWCNT bundles: grooves, external surface and interstitial channels (Ren et al., 2011). The interstitial channels of SWCNT bundles are too small for the adsorbate molecules to fit into, thus grooves and external surface area are the major adsorption sites (Pan et al., 2008). As a result, surface adsorption dominates the adsorption process. Since Langmuir model and PM model were both derived from surface adsorption (Langmuir, 1918; Yang and Xing, 2010), and Freundlich model is a special form of PM model (Yang et al., 2006), it is reasonable that our adsorption data were well fitted by these three models.

In other reports (Yang et al., 2006; Zhou et al., 2013), Langmuir model was not suitable to fit the isotherms. In our study, we considered the low concentration during the adsorption process in our experiment and the homogeneity of SWCNTs to be the main reasons for this conflict. The Langmuir model is based on these assumptions (Langmuir, 1918): the adsorption is caused by forces typically chemical; the adsorbed film is monolayer; all adsorption sites are energetically equivalent; no interactions exist between adsorbate molecules. Low concentration of adsorbate can reduce the interactions between adsorbate molecules. In our study, the concentrations of chlorophenols were kept below 0.015 mmol/L, and the SWCNTs used were highly pure. Thus

Table 3 – Kinetic parameters of pseudo-first order and pseudo-second order model for six kinds of chlorophenols.

<table>
<thead>
<tr>
<th>Adsorbates</th>
<th>(C_o) (mg/L)</th>
<th>Pseudo-first order</th>
<th>Pseudo-second order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(q_e) (mg/g)</td>
<td>(K_1) (hr(^{-1}))</td>
<td>(R^2)</td>
</tr>
<tr>
<td>2-CP</td>
<td>1.7</td>
<td>26</td>
<td>5.85</td>
</tr>
<tr>
<td>4-CP</td>
<td>1.7</td>
<td>23</td>
<td>10.07</td>
</tr>
<tr>
<td>2,4-DCP</td>
<td>1.7</td>
<td>51</td>
<td>4.13</td>
</tr>
<tr>
<td>2,6-DCP</td>
<td>1.7</td>
<td>38</td>
<td>4.22</td>
</tr>
<tr>
<td>2,4,5-TCP</td>
<td>1.7</td>
<td>63</td>
<td>5.90</td>
</tr>
<tr>
<td>2,4,6-TCP</td>
<td>1.7</td>
<td>54</td>
<td>6.91</td>
</tr>
</tbody>
</table>

Table 4 – Fitting parameters of three different models for six kinds of chlorophenols and single point adsorption coefficient.

<table>
<thead>
<tr>
<th>Chlorophenols</th>
<th>Freundlich</th>
<th>Langmuir</th>
<th>Polanyi–Manes</th>
<th>LogKD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(K_f) (mg(^{1-n}) · g(^{-1}) · L(^n))</td>
<td>(n)</td>
<td>(R^2)</td>
<td>(q_{wm}) (mg/g)</td>
</tr>
<tr>
<td>2-CP</td>
<td>24.95</td>
<td>0.3995</td>
<td>0.976</td>
<td>24.9</td>
</tr>
<tr>
<td>4-CP</td>
<td>24.92</td>
<td>0.3684</td>
<td>0.958</td>
<td>29.0</td>
</tr>
<tr>
<td>2,4-DCP</td>
<td>54.85</td>
<td>0.3349</td>
<td>0.946</td>
<td>59.9</td>
</tr>
<tr>
<td>2,6-DCP</td>
<td>45.61</td>
<td>0.6508</td>
<td>0.994</td>
<td>55.3</td>
</tr>
<tr>
<td>2,4,5-TCP</td>
<td>102.0</td>
<td>0.4187</td>
<td>0.991</td>
<td>107.7</td>
</tr>
<tr>
<td>2,4,6-TCP</td>
<td>122.9</td>
<td>0.6507</td>
<td>0.992</td>
<td>166.8</td>
</tr>
</tbody>
</table>
the assumptions of Langmuir model were well met under our experiment conditions.

The Freundlich model fitted the isotherms well with values of nonlinearity index n varying from 0.3349 to 0.6507. With n value approaching 1, the nonlinearity of the isotherm decreases. There is no clear correlation between the properties of chlorophenols and n values. This indicates that nonlinearity of Freundlich model is decided by multiple factors. Two factors are reported to have influence on the nonlinearity: the molar volume of adsorbate and electrostatic repulsion between the adsorbed and dissolved adsorbate ions (Chen et al., 2011; Sun et al., 2012). Smaller molar volume facilitates the adsorbate molecules getting into the grooves and interstitial regions which contains more heterogeneous sites (Sun et al., 2012). As a result, the molar volume is negatively correlated with nonlinearity of isotherms. The electrostatic repulsion will also increase the nonlinearity. As shown in Table 1, chlorophenols with larger volume size dissociate more easily. With the two factors acting together, the nonlinearity has no clear tendency.

2.3. Comparison of adsorption capacity among different chlorophenols

The adsorption capacity of different chlorophenols onto pristine SWCNTs varies with the number of chlorine groups. As shown in Fig. 2, chlorophenols with more chlorine groups have higher adsorption capacity on SWCNTs. This is also reflected by the parameters of q_m and Q in Table 4. We suggest that hydrophobicity is the main reason for the difference in adsorption capacity. A linear relationship between log K_{ow} and log K_d is shown in Fig. 3, which confirms that adsorption capacity is positively correlated with hydrophobicity.

The linear relationship indicates that hydrophobicity plays a very important role in the adsorption of chlorophenols on SWCNTs. However, other reports (Chen et al., 2007; Pan and Xing, 2008; Wang et al., 2010b) found that adsorption capacity of some aromatic compounds on pristine SWCNTs correlates poorly with hydrophobicity, which suggested that non-hydrophobic interactions contribute greatly to adsorption. Comparing our result with those reports, we contend that hydrophobic interaction dominates the adsorption process of chlorophenols and other non-hydrophobic interactions are relatively weak.

In Fig. 2, the disparity between adsorption capacities of 2,4-DCP and 2,6-DCP is obvious. Since their log K_{ow} values are close to each other, it should be non-hydrophobic interactions that attribute to the difference. The benzene ring of chlorophenols can form $\pi-\pi$ electron–donor–acceptor (EDA) interaction with the surface of SWCNTs (Apul and Karanfil, 2015; Lin and Xing, 2008; Wang et al., 2010a). The strong electronegativity of Cl atom decreases the electron density of benzene ring and makes chlorophenol a π-electron acceptor. The $\pi-\pi$ EDA interaction will be enhanced by the decrease in electron density of benzene ring. For chlorophenols, the electron density of benzene will be affected by the position of chlorine groups. As shown in Figs. 4, 2,4-DCP has a more positively charged benzene ring than 2,6-DCP. As a result, the electron density of 2,4-DCP is lower than 2,6-DCP and the $\pi-\pi$ EDA interaction between 2,4-DCP and SWCNTs is stronger. The
higher adsorption affinity between 2,4-DCP and SWCNTs contributes to the higher adsorption capacity of 2,4-DCP on SWCNTs.

2.4. Comparison of adsorption capacity on different SWCNTs

As a hydrophobic adsorbent, CNTs are easily to aggregate in water due to strong van der Waals interaction along the longitudinal direction of nanotubes (Chen et al., 2004). The purpose of deliberate surface functionalization is to improve the dispersion of CNTs in water thus increase the available adsorption sites (Zhang et al., 2009). In our experiment, the best adsorption capacity of SWCNTs, SWCNT-OH and SWCNT-COOH for six chlorophenols varied from 19–84 mg/g, 19–65 mg/g and 17–65 mg/g, respectively. Fig. 5 shows that adsorption capacities of chlorophenols on different SWCNTs decrease in the following order: SWCNTs > SWCNT-OH > SWCNT-COOH. This is in accordance with the results of other reports (Cho et al., 2008; Sheng et al., 2010; Yu et al., 2014; Zhang et al., 2009) which found that the

Fig. 5 – Adsorption isotherms of chlorophenols on three kinds of SWCNTs (pristine SWCNTs, SWCNT-OH and SWCNT-COOH).
increase in oxides concentration would decrease the adsorption capacity of CNTs greatly.

Several mechanisms have been proposed to explain this phenomenon. First, the oxygen-containing functional groups will create polar region that facilitates the formation of water clusters, which occupy adsorption sites and inhibit adsorbate molecules from being adsorbed (Cho et al., 2008; Zhang et al., 2009). Second, the specific surface areas of SWCNTs are reduced significantly by oxidation (Zhang et al., 2009). As shown in Table 2, the oxygen-containing groups caused about 10% loss in specific surface area for both SWCNT-OH and SWCNT-COOH. This will reduce the adsorption sites of SWCNTs and in turn depress the adsorption of adsorbate molecules. Third, oxides on the surface of SWCNTs can withdraw electrons from π system of SWCNTs, which decreases the ability of SWCNTs as an electron donor (Sheng et al., 2010). As a result, the π–π EDA interaction is reduced and the adsorption capacity is decreased.

The SWCNT-OH has smaller specific surface area and higher oxides concentration than SWCNT-COOH (Table 2). However, the former one has higher adsorption capacity. We propose that the repulsion between chlorophenol anions and dissociated carboxylic groups is the main reason. To those adsorbates which are not ionizable, oxygen-containing groups may have little impact on the adsorption capacity. Zhang et al. (2009) also reported that adsorption capacities of phenanthrene on SWCNT-OH and SWCNT-COOH were close to each other.

2.5. Effect of pH on the adsorption of 2,6-DCP

For organic acids, the fraction of dissociated (f_d) and nondissociated (f_n) species can be estimated by

\[f_d = \frac{1 + 10^{pK_a-pH}}{} \]

and

\[f_n = \frac{1 + 10^{pH-pK_a}}{} \]

respectively (Yang et al., 2008). Fig. 6a shows the distribution of dissociated and nondissociated species of one representative chlorophenol, i.e. 2,6-DCP, as a function of pH. The removal of 2,6-DCP varied with pH as shown in Fig. 6b. The maximum removal of 2,6-DCP occurred at pH 4.8. With the pH increasing from 3.7 to 10.2, the removal decreased from 47.9% to 12.9%. When pH was below the 2,6-DCP’s pK_a, the removal varied slightly, indicating that the effect of pH on the adsorption of 2,6-DCP was not very obvious. However, when pH was above the pK_a, the removal decreased sharply. Dissociation of 2,6-DCP at higher pH may be the main reason for the decrease. As shown in Fig. 6a, the dissociated species is dominant in the solution when pH > pK_a. Because chlorophenol anions are hydrophilic, the hydrophobic interaction between SWCNTs and 2,6-DCP molecules will be reduced greatly. As a result, the adsorption of 2,6-DCP is hindered and the removal is decreased.

Electrostatic repulsion between deprotonated chlorophenol and negatively charged SWCNTs’ surface is another factor that affects the removal. The pH_{pzc} of pristine SWCNTs was 8.1. When pH > pH_{pzc}, the overall surface of SWCNTs is negatively charged. The adsorption of 2,6-DCP anions will be depressed because of the electrostatic repulsion force. This adds to the reduction of adsorption capacity of 2,6-DCP on SWCNTs. With pH increasing, more sites on the surface of SWCNTs get negatively charged, leading to further decrease in removal.

In our experiment, we observed that the highest removal was not obtained at the lowest pH. This indicates that decrease in pH will not always increase the adsorption capacity of 2,6-DCP. A similar result was reported by Yao et al. (Yao et al., 2011). We propose that interaction between hydronium ions and 2,6-DCP molecules reduces the adsorption capacity of 2,6-DCP on SWCNTs. As pH decreases, more hydronium ions are formed and interact with the benzene ring of 2,6-DCP molecule through cation-π interaction (Ma and Dougherty, 1997). This cation-π interaction will make 2,6-DCP molecules more hydrophilic and hinder the adsorption of 2,6-DCP molecules on the surface of SWCNTs.

2.6. Effect of ionic strength on the adsorption of 2,6-DCP

The effect of ionic strength on the adsorption of one representative chlorophenols, i.e. 2,6-DCP, is shown in Fig. 7. The adsorption amount of 2,6-DCP decreased slightly with the
NaCl concentration increasing from 0 to 0.03 mmol/L (Fig. 7a). A similar result was reported by Yu et al. (2014). The impact of KCl on the adsorption capacity of 2,6-DCP was negligible (Fig. 7b). Theoretically, NaCl and KCl both have a “salting-out” effect on the adsorption of hydrophobic organic compounds (Zhang et al., 2010). This effect can enhance the hydrophobicity of 2,6-DCP and the effect of NaCl is stronger than that of KCl (Xie et al., 1997). However, the adsorption capacity of 2,6-DCP did not increase with the addition of NaCl or KCl as expected. This implies that some factors other than ionic strength play an important role in the adsorption process.

It could be proposed that cation–π interaction among SWCNTs, cation ions and 2,6-DCP molecules is the main reason for the reduction of adsorption capacity. Because the binding energy of benzene-benzene is much weaker than that of K+-benzene (Cabarcos et al., 1998), the K+ ions will interact with the surface of SWCNTs and occupy the adsorption sites instead of 2,6-DCP molecules. The K+ ions can also interact with the benzene ring of 2,6-DCP molecule. Finally, a complex, as shown in Fig. 8, will form through cation–π interactions. However, this complex is not stable because water molecules compete with 2,6-DCP on interaction with K+. This competition weakens the adsorption affinity of 2,6-DCP on SWCNTs. The loss of adsorption sites and adsorption affinity will decrease the adsorption capacity of 2,6-DCP on SWCNTs. This mechanism is also suitable for Na+. The only difference is that the binding energy of Na+-benzene is weaker than that of K+-benzene (Kumpf and Dougherty, 1993), which further weakens the adsorption affinity of 2,6-DCP on SWCNTs.

The reduction of 2,6-DCP adsorption amount with addition of NaCl indicates that the effect of cation–π interaction overwhelmed the salting-out effect in the adsorption of 2,6-DCP. The two effects were equivalent to each other with the addition of KCl, which was reflected by the negligible change of 2,6-DCP adsorption capacity. These results indicate that SWCNTs may not be suitable for the removal of chlorophenols from salting wastewater.

2.7. Comparison of chlorophenols adsorption by different adsorbents

The comparison of chlorophenol adsorption by SWCNTs, MWCNTs and PAC were made to further evaluate the application potential of SWCNTs. To compare the adsorption capabilities of different adsorbents, the K_d values at three different concentrations (0.1, 1 and 10 mg/L) were calculated with data from this study and published reports (Colella et al., 1998; Kragulj et al., 2015; Kuśmierek and Świątkowski, 2014; Strachowski and Bystrzejewski, 2015; Tseng et al., 2010). The K_1 and K_2 values were gathered to compare the adsorption rate of chlorophenols onto different adsorbents.

As shown in Table 5, the K_d values of the three adsorbents decrease in the following order: PAC > SWCNTs > MWCNTs. The K_d values of PAC are 1–3 orders of magnitude higher than those of MWCNTs. The adsorption capacity of MWCNTs is significantly lower than that of the other two adsorbents, largely due to the small SSA of MWCNTs, suggesting that MWCNTs may not be suitable for the removal of chlorophenols. As concentration increases, the K_d values of SWCNTs became more comparable to that of PAC, indicating that the adsorption of chlorophenols on SWCNTs became more favorable at higher concentrations.

The rate constants for MWCNTs and SWCNTs are much higher than those of PAC (Table 5). The rate constants of pseudo-second order model (K_2) for PAC are 1–2 orders of magnitude lower than those of SWCNTs. This indicates that adsorption equilibrium can be achieved much faster by
SWCNTs than by PAC. The faster kinetic adsorption rate on CNTs may be attributed to the external surface and grooves of CNTs are highly available to adsorbate molecules (Chen et al., 2011), while the adsorption sites of PAC are within the pore structure thus increasing the contact time (Strachowski and Bystrzejewski, 2015).

3. Conclusions

This study investigated the adsorption of six kinds of chlorophenols on three kinds of SWCNTs. The adsorption equilibrium was reached within 2 hr, and the pseudo-second order model well described the adsorption kinetics. All adsorption isotherms of chlorophenols on pristine SWCNTs were fitted well by Langmuir, Freundlich and Polanyi structure thus increasing the contact time (Strachowski and Bystrzejewski, 2015). The adsorption capacity of chlorophenols on three kinds of SWCNTs decreased as the oxidation of SWCNTs and solution environments had significant effects on the adsorption of chlorophenols onto SWCNTS.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 51290284).

References

Table 5 – Comparison of Kₐ, K₁, and K₂ values for chlorophenols adsorbed onto different adsorbents.

<table>
<thead>
<tr>
<th>Adsorbates</th>
<th>Adsorbents</th>
<th>Kₐ (L/g)</th>
<th>0.1 mg/L</th>
<th>1 mg/L</th>
<th>10 mg/L</th>
<th>K₁ (hr⁻¹)</th>
<th>K₂ (g/(mg·hr⁻¹))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-DCP</td>
<td>SWCNTs</td>
<td>99.44</td>
<td>24.95</td>
<td>6.25</td>
<td>5.85</td>
<td>0.31</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>MWCNTs</td>
<td>0.64</td>
<td>0.63</td>
<td>0.59</td>
<td>NA</td>
<td>>6</td>
<td></td>
<td>Strachowski and Bystrzejewski (2015); Colella et al. (1998)</td>
</tr>
<tr>
<td></td>
<td>PAC</td>
<td>1377.32</td>
<td>195.45</td>
<td>27.73</td>
<td>NA</td>
<td>0.016</td>
<td></td>
<td>Strachowski and Bystrzejewski (2015); Colella et al. (1998)</td>
</tr>
<tr>
<td>4-CP</td>
<td>SWCNTs</td>
<td>106.70</td>
<td>24.92</td>
<td>5.82</td>
<td>10.07</td>
<td>0.45</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>MWCNTs</td>
<td>13.54</td>
<td>3.79</td>
<td>1.06</td>
<td>3.42</td>
<td>0.23</td>
<td></td>
<td>Kuśmieriek and Świątkowski (2014)</td>
</tr>
<tr>
<td></td>
<td>PAC</td>
<td>187.47</td>
<td>46.86</td>
<td>11.71</td>
<td>0.96</td>
<td>0.0037</td>
<td></td>
<td>Kuśmieriek and Świątkowski (2014)</td>
</tr>
<tr>
<td>2,6-DCP</td>
<td>SWCNTs</td>
<td>253.67</td>
<td>54.85</td>
<td>11.85</td>
<td>4.13</td>
<td>0.09</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>MWCNTs</td>
<td>52.63</td>
<td>42.00</td>
<td>33.51</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>Kragulj et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>PAC</td>
<td>1092.27</td>
<td>287.10</td>
<td>75.46</td>
<td>2.46</td>
<td>0.02-0.036</td>
<td></td>
<td>Tseng et al. (2010)</td>
</tr>
</tbody>
</table>

* NA: not available.

