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A model is developed to enable estimation of chloramine demand in full scale drinking
water supplies based on chemical and microbiological factors that affect chloramine decay
rate via nonlinear regression analysis method. The model is based on organic character
(specific ultraviolet absorbance (SUVA)) of the water samples and a laboratory measure of
the microbiological (Fm) decay of chloramine. The applicability of the model for estimation
of chloramine residual (and hence chloramine demand) was tested on several waters from
different water treatment plants in Australia through statistical test analysis between the
experimental and predicted data. Results showed that the model was able to simulate and
estimate chloramine demand at various times in real drinking water systems. To elucidate
the loss of chloramine over the wide variation of water quality used in this study, the model
incorporates both the fast and slow chloramine decay pathways. The significance of
estimated fast and slow decay rate constants as the kinetic parameters of the model for
three water sources in Australia was discussed. It was found that with the same water
source, the kinetic parameters remain the same. This modelling approach has the potential
to be used by water treatment operators as a decision support tool in order to manage
chloramine disinfection.
© 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

A key goal of drinkingwater treatment plants is to supplywater
that is safe and is also aesthetically acceptable to customers. As
a stage in water treatment processes, disinfection of drinking
water has been regularly carried out since the early 20th century
to destroy pathogenic organisms and prevent waterborne
diseases (Elshorbagy et al., 2000). In order to meet regulations
regarding formation of disinfection by-products (DBPs) in
drinking water, chloramine is commonly used as a disinfectant
mal).

o-Environmental Science
instead of chlorine, particularly in Australia and the USA
(Moradi et al., 2016; Sarker et al., 2015). The main advantage of
using chloramine over chlorine is the slow decay rate of
chloramine since it is less reactive with natural organic matter
(NOM). Therefore, the use of chloramine also reduces the
formation of regulated DBPs, such as trihalomethanes and
haloacetic acids (Goslan et al., 2009; Jafvert and Valentine, 1992;
Vikesland et al., 2001). The dose of chloramine is crucial, to
ensure that the water is safe to drink, but also needs to be
properly considered to prevent taste and odour problems
s, Chinese Academy of Sciences. Published by Elsevier B.V.
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arising from the use of high chloramine doses. Chloramination
requires careful control of the chlorine to ammonia ratio,
and pH to avoid nitrification that will deplete chloramine
residuals, particularly in storage tanks and outer extremities
of a distribution system. Maintaining a disinfectant residual
throughout the water distribution system is important in
ensuring microbiologically safe water which is supplied at the
customer's tap (Fitzgerald et al., 2006). Control of disinfectant
residual in Australianwater distribution systems is challenging
due to high levels of dissolved organicmatter (DOM) that can be
present (which therefore results in high disinfectant demand),
seasonal variation in flow demands and varying water temper-
atures (Fitzgerald et al., 2006; Hua et al., 1999).

In chloraminated drinking water systems, monochloramine
decay occurs due to chemical and microbiological reactions
(Krishna and Sathasivan, 2010; Sathasivan et al., 2005). In order to
manage disinfection residuals in drinking water, it is important
to discriminate between chemical and microbiological decay
processes. Chemical factors affecting monochloramine decay
include DOM measured as dissolved organic carbon (DOC)
concentration, pH, nitrite, organic nitrogen compounds, chlo-
rine to ammonia ratio and temperature (Cook et al., 2012;
Sathasivan et al., 2005; Zhang et al., 2010). In addition, the
presence of dead microbial cells and abiotic particles in water
may also affect monochloramine decay. The impact of micro-
biological decay on monochloramine decay can be determined
by the analysis of Fm. This simple strategy involves comparing
monochloramine decay rates in processed (0.2 μm membrane
filtered) and unprocessed samples (Sathasivan et al., 2005).

Grab sample monitoring of disinfectant residual in drinking
water systems can lead to delay in corrective response in
disinfectant dosing at the treatment plant. Consequently,
applied doses that are either too high or too low are often
identified too late for an operator to react and to take corrective
action (Hua et al., 1999; Rodriguez and Sérodes, 1998). When
considering the tools that operators might utilise to manage
disinfection, models are potential options (Gnos et al., 2013).
Modelling of disinfectant demand in treated water is aimed at
creating a better understanding of the effect of raw water
quality on the disinfection consumption and can serve as a
decision making tool for effective water quality control
(Abdullah et al., 2009; Gnos et al., 2013). Some researchers
developed several models for prediction of chlorine demand
and the formation of DBPs using different methods such as
multiple regression analysis (Abdullah et al., 2009; Uyak et al.,
2007), or neural networks (Janes andMusilek, 2007). In addition,
kinetic models describing the formation of different group of
DBPs during chloramination have been addressed in some
studies (Alsulaili et al., 2010; Duirk and Valentine, 2007; Zhai
et al., 2014). Zhu and Zhang (2016) studied the formation
kinetics of DBPs during chloramination through formation of
total organic chlorine (TOCl), total organic bromine (TOBr), and
total organic iodine (TOI). They incorporated a series of
reactions into two kinetic models which provided valuable
insight into reactions that control the formation of DBPs in
chloramination. The formation and decay of bromochloramine
as a function of operating conditions, such as pHandCl2/N ratio
were examined by Alsulaili et al. (2010), and they refined a
chemical kinetic model to predict haloamine concentrations
over time. Zhai et al. (2014) studied the kinetics of formation of
brominated DBPs during chloramination and developed a
quantitative empirical model based on major reactions
involved.

The development of reliable models is increasingly
recognised as an essential methodological basis for predicting
chloramine demand because it is one of the main factors in
determining the chloramine dosage during chloramination.
Due to the complexity of the chloramine properties, surrogate
parameters have been developed to predict its demand and
estimate its reactivity toward DBP formation. These surrogate
parameters include DOC, ultraviolet absorbance (UVA), and
specific ultraviolet absorbance (SUVA) (Chow et al., 2007;
Fitzgerald et al., 2006; Hua et al., 2015). SUVA is defined as the
ultraviolet (UV) absorbance at 254 nm/m divided by the DOC
concentration (mg/L). SUVA represents the average absorp-
tivity at 254 nm from all the organic molecules that comprise
the DOC (Weishaar et al., 2003). Strong correlation between
SUVA and different classes of DBPs during chlorination (Chu
et al., 2010), and chloramination (Chu et al., 2013; Hua et al.,
2015) was observed, and therefore SUVA can be a useful
surrogate parameter to characterise NOM during drinking
water treatment. Fitzgerald et al. (2006) predicted the chlorine
and chloramine demand based on chemical water quality
parameters. They found that surrogate chemical water quality
parameters such as DOC and UVA254 can be used for chlorine
demand prediction. However, Fitzgerald et al. (2006) reported
that chloramine demand did not correlate well with the DOC
or UVA254 for three day demand prediction. Their focus was
just on chemical based water quality parameters. To the best
of our knowledge, a predictive model that considers the
effects of both chemical and microbiological effects together
for the determination of disinfectant demand has not been
developed.

The aim of this study was to develop amodel for prediction
of chloramine demand under different water quality condi-
tions using surrogate chemical and microbiological parame-
ters in waters of different quality as measured by DOC and
UVA254. A mathematical model to predict chloramine demand
at later times was developed via nonlinear regression analysis
based on chemical and microbiological parameters deter-
mined from 2-day chloramine decay tests. Fast and slow
decay rate constants of three Australian water sources with
different organic matter character (SUVA) and microbiological
decay rate (Fm) were determined and themodel was evaluated
for water samples from these water sources that had not been
included in the regression analysis. This numerical approach
for chloramine demand estimation based on the water quality
and dosing conditions can be considered as a pre-warning
method to control disinfection dosing process in drinking
water system. This has potential to be applied within the
water industry as a decision support tool for drinking water
system management.
1. Experimental

1.1. Sampling locations

Water samples were taken prior to disinfection from different
water treatment plants supplied with water sourced from
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Maryborough, Victoria (VIC), Mundaring Weir in Western
Australia (WA), and Murray River in South Australia (SA)
from 2010 to 2015. The description of water treatment plants,
their water sources and abbreviations are described in
Appendix A Table S1. This selection produced a database of
varying water qualities throughout Australia and incorporat-
ed seasonal variation. The database facilitated the determi-
nation of surrogate parameters for the prediction of
disinfection demand that would hold over a range of water
qualities and seasons. Water samples prior to disinfection have
been taken from different water treatment plants that are
sourced from aforementioned water sources, chloraminated in
laboratory and the rate of monochloramine decay over time
was studied. The chloramine decay tests were completed using
operational conditions as follows: target NH2Cl 4.0 ± 0.1 mg/L
asCl2, Cl2 dose 4.0 mg/L, NH3\Ndose 0.89 mg/L, order of dosing
is ammonia + chlorine, Cl2:NH3\N ratio 4.5:1, temperature
30 ± 1°C, and pH 8.2 ± 0.1.

1.2. Analytical methods

Water samples were chloraminated under laboratory conditions
using a free chlorine stock solution prepared by the addition of
gaseous chlorine to ultra-pure water and analytical grade liquid
ammonia (1000 mg/L as N). Chloramine residuals, pH, tempera-
ture and ammonia concentration for all water samples
wereanalysedatdifferent times. Free chlorineandboundchlorine
were determined using N,N-diethyl-p-phenylenediamine
(DPD)–ferrous ammonium sulphate (FAS) titrimetric proce-
dure (APHA et al., 1998). Ammonia concentrations were
determined using ammonia-selective electrode Standard
Method 4500-NH3 (D) (APHA et al., 1998). UVA254 was
measured through a 1 cm quartz cell using an Evolution 60
Spectrophotometer (Thermo Scientific, USA). DOC was mea-
sured using a Sievers 900 Total Organic Carbon Analyser (GE
Analytical Instruments, USA). Measurements of pH and temper-
aturewere conductedusingaportable pHmeterwitha sealed, gel
filled reference electrode with temperature compensation
(pH 320, WTW, Germany). Ultra-pure water was obtained from
a Milli-Q purification system (Millipore, France). All water
samples were processed to determine the relative contribution
of microbiological mediated monochloramine decay to the
overall monochloramine decay in the bulk water, by determina-
tion of a microbial decay factor (Fm) described by Sathasivan et
al. (2005). Briefly, themicrobial decay factor is determined from
the ratio of the monochloramine decay rate of unfiltered water
to filtered (0.2 μm membrane) water. In this test, the filtered
water has micro-organisms removed that are responsible for
monochloramine decay, and represents decay by chemical
means only. Conversely, the unfiltered water will have chlora-
mine decay by both microbial and chemical processes.

1.3. Model development

The kinetic behaviour of chloramine decay has been described
by first-order, second-order, power and parallel first-order
decay functions (Haas andKarra, 1984; HarringtonandNoguera,
2003; Yang et al., 2008). Since a significant loss of chloramine
happens in the first few minutes of contact time with NOM,
chloramine decay was assumed to be described by the sum of
two first-order equations, in which the first part describes a
rapid decay and the second simulates a slower decay.

C ¼ C0 � x � exp −k1tð Þ þ C0 � 1−xð Þ � exp −k2tð Þ ð1Þ

In this equation, C is chloramine concentration (mg/L) at
time t (hr), C0 is initial chloramine concentration (mg/L), x
is fraction of fast reacting agents with chloramine, and k1 and k2
are rate constants (L/(mol∙hr)) for the fast and slow reactions,
respectively. Duirk et al. (2002) assumed that chloramine directly
reactedwith both the fast reactive fractions in theNOMstructure
through a direct reaction ofmonochloramine with NOM and the
slow reactive fractions in the NOM structure through reaction of
free chlorine fromchloraminehydrolysis. The parallel first-order
decay model assumes that decay proceeds through two mech-
anisms, each consisting of first-order reactions, and involving a
different component of the chloramine residual (that is,
component x with concentration C0x, is subject to first-order
decay with a rate constant of k1 (fast reactive fractions) and the
remainder, the initial chloramine residual without component
x, C0⋅ (1−x), is subject to first-order decaywith a rate constant of
k2 (slow long-term reactive fractions)-by definition, x is limited
to a range between zero and unity) (Haas and Karra, 1984).

To have two parallel first-order decays for chloramine
residual, the chloramine demand is described in a differential
equation as follows (the derivation of the differential equation
is given in Appendix A):

∂CDemand

∂t
¼ C0 � x � k1 � exp −k1tð Þ þ C0 � 1−xð Þ � k2 � exp −k2tð Þ ð2Þ

The strategy here is to predict chloramine demand (CDemand)
at different times based on chemical and microbiological water
quality data obtained from a 2-day chloramine decay test and
water quality (SUVA). By taking the integral of Eq. (2), and
setting the lower limit of the integral at 2-days, chloramine
demand can be determined according to Eq. (3).

CDemand tð Þ ¼ Ct¼2
Demand−

C0 � x � k1
k1

� exp −k1tð Þ
�
�
�
�
�

t

t¼2

−
C0 � 1−xð Þ � k2

k2

� exp −k2tð Þ
�
�
�
�
�

t

t¼2

ð3Þ

It is known that increasing the SUVAand Fmas chemical and
microbiological effectsmay result in a greatermonochloramine
decay rate (Hua et al., 2015; Sathasivan et al., 2005). Therefore, it
is assumed that chloramine demand for water samples after
2-days can be represented by Eq. (4):

Ct¼2
Demand ¼ a � Fm þ b � SUVAþ c � Fm � SUVA ð4Þ

By substituting Eq. (4) to Eq. (3), and doing a set of
mathematical operations, the final equation for prediction of
chloramine demand with 3 model variable of Fm, SUVA, and
time is as follows (Eq. (5)).

CDemand tð Þ ¼ a � Fm þ b � SUVAþ c � Fm � SUVA−C0 � x � exp −k1tð Þ
−C0 � 1−xð Þ � exp −k2tð Þ þ d

ð5Þ
where, a is the contribution factor of microbiological parameter
on chloramine demand, b is the contribution factor of chemical
parameter on chloramine demand, c is the contribution of
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combined effects of microbiological and chemical parameters,
d = C0⋅x⋅ exp(−2⋅k1)+C0⋅ (1−x)⋅ exp(−2⋅k2), C0 is the initial
chloramine residual at time zero,x is the fraction of fast reacting
agents in chloramine demand (0 < x < 1), k1 is the fast reacting
kinetic coefficient of chloramine demand, and k2 is the slow
reacting kinetic coefficient of chloramine demand.

As shown in Eq. (5), themodel output is chloramine demand
atdifferent times. The initial concentration of chloramine, time,
chemical (SUVA) and microbiological water quality parameters
(Fm), measured from a 2-day chloramine decay test were used
as inputs to the model. Model parameters such as fast and
slow reacting kinetic coefficients of chloramine demand were
estimated by regression analysis.
1.3.1. Model calibration and validation
Model calibration was performed by estimating selected
parameters via nonlinear regression analysis of 70% of the
experimental data from one of the water treatment plants of
each water sources (~250 water samples). Model verification
was conducted with experimental data from the other water
samples, which had not been included in the regression
analysis. Residual plots were used to check the validity and
precision of the calibrated models. A multiresponse regres-
sion determinant criterion method was programmed in
MATLAB 8.5 to calibrate the chloramine demand model with
optimal parameters that best matched simulations with the
experimental data based on minimization of the sum of the
square of differences between the experimental data and the
predicted values for the chloramine demandmodel (Bates and
Watts, 1985). For validation, a plot of predicted values versus
measured values was evaluated through statistical test
analysis and the best fit line was determined from the
coefficient and slope of the regression equation.
2. Results and discussion

2.1. Water quality characteristics of selected water samples

Water samples with a wide range of water quality character-
istics were examined in this study as described in Table 1. It
should be noted that all water samples used for this study
were collected before disinfection. Some raw water samples
before any drinking water treatment steps were used to
Table 1 – The averaged value of water quality parameters for st

Variable Raw water samples

T.B.WTP (SA) M.WTP (WA) Ma.W

Turbidity (Nephelometric
Turbidity Unit; NTU)

120 ± 5 80 ± 5 85

Conductivity (μS/cm) 480 ± 20 627 ± 20 553
Colour (Hazen Unit; HU) 55 ± 5 20 ± 5 35
UVA254 (cm−1) 0.477 ± 0.05 0.312 ± 0.05 0.1
DOC (mg/L) 11.8 ± 0.2 6.31 ± 0.1 9.3
Fm 4.8 ± 0.2 4.01 ± 0.2 4.2

SA: South Australia; WA: Western Australia; VIC: Victoria; UVA: ultraviol
expand the range of water qualities examined. The averaged
value of water quality parameters for studied raw and treated
(before disinfection) water samples is presented in Table 1.

2.2. Model calibration and verification

The model uses Fm, SUVA, time and initial chloramine dosage
as independent parameters. The model parameters deter-
mined via nonlinear regression analysis based on 70% of
water samples from Tailem Bend water treatment plant
(T.B.WTP), Mundaring water treatment plant (M.WTP), and
Maryborough water treatment plant (Ma.WTP) that are
sourced from Murray River, Mundaring Weir, and Centenary
Reservoir, respectively are shown in Table 2.

As it can be seen from Table 2, that water samples from
Mundaring Weir (WA) have lower kinetic coefficient for fast
reacting agents (0.01×104 (L/(mol∙hr)) but higher kinetic coeffi-
cient for slow reacting agents (5.9 (L/(mol∙hr)) in comparison
withwater samples fromSAandVIC.WAwater is partly treated
water which includes desalinatedwater, and a small amount of
local run-off, therefore compounds producing faster chlora-
mine decay have been removed in the treatedwater to a greater
extent than the other two sites using conventional treatment,
as evidenced by a lower x (fraction of fast reacting agents in
chloramine demand). In other words, the percentage of fast
reactive sites in the NOM structure of WA water that can
directly react with chloramine is less than water samples from
SA andVIC. The values for the fraction of fast reacting agents (x)
of theWAand SA sampleswere similar. In order to determine if
there was any statistical difference in the fraction of fast
reacting agents in chloramine demand (x) between WA water
with water samples from Tailem Bend (SA), a two-sample t-test
conducted, and t results are presented in Appendix A Table S2.
The p-value of ≪0.05 was obtained, showing that there is less
than 5% chance that the two sets of x values from WA and SA
are statistically the same. The t-value in this study is 6.03, and
the critical t-value (the minimum t-value required to have
p-value less than 0.05) is 2.09. Because the t-value is more than
the critical t-value, it is concluded that the difference between
the x values of WA and SA samples is significant. Less
percentage of fast reactive agents (x), and also higher slow
long-term reaction constant (k2) inWAwater implied that there
is more reaction of free chlorine (HOCl) derived from
monochloramine hydrolysis with NOM compared to water
samples from SA and VIC (Duirk et al., 2002; Vikesland et al.,
udied raw and treated (before disinfection) water samples.

Treated water samples before disinfection

TP (VIC) T.B.WTP (SA) M.WTP (WA) Ma.WTP (VIC)

± 5 0.150 ± 0.1 0.135 ± 0.1 0.175 ± 0.1

± 20 526 ± 20 688 ± 20 571 ± 20
± 5 5 ± 1 2 ± 1 4 ± 1
87 ± 0.05 0.095 ± 0.03 0.031 ± 0.01 0.085 ± 0.02
6 ± 0.1 5.25 ± 0.1 2.60 ± 0.1 4.95 ± 0.1
5 ± 0.2 0.67 ± 0.1 0.51 ± 0.1 1.23 ± 0.1

et absorbance; DOC: dissolved organic carbon.



Table 2 – Coefficients of the proposedmodel of chloramine demand for water samples from T.B.WTP, M.WTP, andMa.WTP.

Model parameter a b c x k1 ((mol/L)−1·hr−1) k2 ((mol/L)−1·hr−1)

T.B.WTP (SA) 1.62 0.40 −0.48 0.85±0.03 0.03×104±0.005×104 4.2±0.05
M.WTP (WA) 1.74 0.53 −1.16 0.82±0.04 0.01×104±0.004×104 5.9±0.06
Ma.WTP (VIC) 1.95 0.35 −0.91 0.98±0.01 0.11×104±0.007×104 2.4±0.06

SA: South Australia; WA: Western Australia; VIC: Victoria.

5J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 5 7 ( 2 0 1 7 ) 1 – 7
1998). In order to check whether calculated model parameters
(presented in Table 2) can predict chloramine demand of water
samples from these three water treatment plants that were not
included in parameter optimisation, the experimentally mea-
sured and predicted chloramine demand at different times for
water samples with different water quality, collected at
different seasons from 2011 to 2015, from T.B.WTP, M.WTP
andMa.WTP are compared (as shown in Fig. 1). The comparison
shows that the model can predict the chloramine demand of
water samples with different water quality ranging from raw
water with high Fm value to filtered water with lower Fm over
18-day period. It should be noted that Fm value (microbiological
effect) is high for raw water sample prior to any treatment
process, therefore after three or four days the chloramine
residual declined to zero. Once the chloramine residual is
depleted, chloramine demand would remain constant over the
time.

We hypothesise that there is no need to determine
parameters of suggested model to predict chloramine de-
mand at different times for water samples from different
water treatment plants that have the same water source. To
investigate this idea, water samples from other water
treatment plants with different treatment methods, but with
the same water sources were studied. In other words, based
on the model parameters from T.B.WTP, predictability of
chloramine demand for water samples from another water
treatment plant (Morgan WTP (Mo.WTP)) that also draws raw
water from the Murray River was investigated (Fig. 2).

As it can be seen from Fig. 2, the derived model for the
Murray River sourced water is able to predict chloramine
demand for water samples from Mo.WTP using the calculated
model parameters based on T.B.WTP. It should be noted that
T.B.WTP (SA) M.WTP (WA)
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Fig. 1 – Experimental measured and predicted chloramine dema
quality from three studied water treatment plants.
the model parameters taken from Mundaring Weir and
Centenary Reservoir were not able to predict chloramine
demand at different times for water samples from Mo.WTP
due to the different water source. To further confirm that the
model can be used to predict the chloramine demand for
water samples from different water treatment plants with the
same water source, the model was re-applied based on the
model parameters from T.B.WTP to predict the chloramine
demand for water samples from different water treatment
plants on May 2011 (all of them draw their raw water from
Murray River, Fig. 3).

According to Fig. 3, it can be concluded that once themodel
parameters have been determined for a set of water samples,
the model can be applied to predict chloramine demand of
other water samples that are sourced from the same raw
water. However, different water sources in this study are
shown to have different model parameters such as fast and
slow reacting kinetic coefficients. Therefore, each water
source should have a specific percentage of reactive fractions
within the organic matter that exhibit reactivity directly with
chloramine (for fast disinfectant demand) or HOCl from
chloramine hydrolysis (slow long-term disinfectant demand).

2.3. Model validation via statistical data analysis

To determine how well the derived chloramine demand model
fits the experimental data, a model validation is carried out.
Model validation is a fundamental element to the modelling
process and can often lead to the model being reformulated. In
order to validate themodel, analysis of independent set of data
with ~60 water samples is performed. This involved collecting
the new set of data and subsequently comparing the data with
Ma.WTP (VIC)
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the model predictions. Using independent set of data obtained
from the same water source, the validation is performed
through the examination of statistical test, as shown in
Appendix A Table S3. Mean square error of prediction is a
parameter of measuring the actual predictive capability of the
model developed by using a new set of data. It was found that
the chloramine demandmodel had a low prediction error. Fig. 4
illustrates that there was no significant difference between the
experimental and predicted data for studied water sources. In
general, the statistical coefficients of determination of the
model appeared satisfactory (Appendix A Table S3). The R2

(0.82), standard error of the estimate (0.0435) and the F value
(37.799) of the model were found to be statistically significant.
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Fig. 3 – Comparisonof themeasured andpredicted chloramine
demand based on the model parameters from Tailem Bend
water treatment plant (T.B.WTP) for water samples from
different WTPs that are sourced from River Murray on May
2011.
3. Conclusions

This study was conducted to derive a model to predict
chloramine demand in water samples using chemical and
microbiological parameters that impact on chloramine decay
rate. Based on Fm, SUVA, time, and initial chloramine residual
determined from 2-day chloramine decay tests, themodel can
be successfully applied to predict chloramine demand for
various water samples from three different water sources,
Murray River in SA, Mundaring Weir in WA, and Maryborough
in VIC, Australia. The model can also be used to predict the
chloramine demand for water samples from different water
treatment plants that are sourced from the samewater source
using the same set of model parameters. Each water source
should have a specific percentage of reactive fractions in the
NOM that exhibit reactivity directly with chloramine (for fast
disinfectant demand) or HOCl from chloramine hydrolysis
(slow long-term disinfectant demand). To test the validity and
applicability of this model, new set of data were analysed and
compared to the predictive values. Validation results showed
that there were no significant differences and the errors of
prediction were low between the observed and the predicted
data. The chloramine demand model could be useful for both
the drinking water quality management and treatment plant
operational management. In addition the model could be
used as a guide in decision making to choose the appropriate
strategies to reduce chloramine consumption and improve
the disinfection process.
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