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Since the launch of its first satellite in 1972, the Landsat program has operated continuously
for more than forty years. A large data archive collected by the Landsat program sig-
nificantly benefits both the academic community and society. Thermal imagery from
Landsat sensors, provided with relatively high spatial resolution, is suitable for monitoring
urban thermal environment. Growing use of Landsat data in monitoring urban thermal
environment is demonstrated by increasing publications on this subject, especially over the
last decade. Urban thermal environment is usually delineated by land surface temperature
(LST). However, the quantitative and accurate estimation of LST from Landsat data is still a
challenge, especially for urban areas. This paper will discuss the main challenges for urban
LST retrieval, including urban surface emissivity, atmospheric correction, radiometric
calibration, and validation. In addition, we will discuss general challenges confronting the
continuity of quantitative applications of Landsat observations. These challenges arise
mainly from the scan line corrector failure of the Landsat 7 ETM+ and channel differences
among sensors. Based on these investigations, the concerns are to: (1) show general users
the limitation and possible uncertainty of the retrieved urban LST from the single thermal
channel of Landsat sensors; (2) emphasize efforts which should be done for the quantitative
applications of Landsat data; and (3) understand the potential challenges for the continuity
of Landsat observation (i.e., thermal infrared) for global change monitoring, while several
climate data record programs being in progress.
© 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Table 1 – General information about the Landsat sensors.

Landsat 4/5 TM Landsat 7
ETM+

Landsat 8
OLI/TIRS

Visible (μm) 0.45–0.52 (30 m) 0.45–0.52 (30 m) 0.45–0.51 (30 m)
0.52–0.60 (30 m) 0.52–0.60 (30 m) 0.53–0.59 (30 m)
0.63–0.69 (30 m) 0.63–0.69 (30 m) 0.64–0.67 (30 m)

Near infrared 0.76–0.90 (30 m) 0.77–0.90 (30 m) 0.85–0.88 (30 m)
Short-wave
infrared

1.55–1.75 (30 m) 1.55–1.75 (30 m) 1.57–1.65 (30 m)
2.08–2.35 (30 m) 2.09–2.35 (30 m) 2.11–2.29 (30 m)

Panchromatic 0.52–0.90 (15 m) 0.50–0.68 (15 m)
Thermal
infrared

10.40–12.50
(120 ma)

10.40–12.50
(60 mb)

10.60–11.19
(100 mc)
11.50–12.51
(100 m)

[Band 1] 0.43–0.45 (30 m)
[Band 9] 1.36–1.38 (30 m)

[] Compared with its predecessors, Landsat 8 has two new bands,
including a band (Band 1, 0.43–0.45 μm) useful for coastal and
aerosol studies and a band (Band 9, 1.36–1.39 μm) useful for cirrus
cloud detection. Values in parentheses in Table 1 are spatial
resolutions of the specific thermal images. The resolution for ETM+
and OLI panchromatic bands of is 15 m, and the spatial resolution
for other spectral bands located within visible, near infrared, and
short-wave infrared regions is 30 m. Information in Table 1 is
obtained from http://landsat.usgs.gov/band _designations_landsat_
satellites.php.
a TM thermal band was originally acquired at 120 m resolution. But,
products processed before February 25, 2010 are resampled to
60 m pixels, while products processed after February 25, 2010 are
resampled to 30 m pixels.
b ETM+ thermal band is acquired at 60 m resolution. Products
processed after February 25, 2010 are resampled to 30 m pixels.
c TIRS thermal bands are acquired at 100 m resolution, but are
resampled to 30 m in delivered data product.
Introduction

The Landsat program, jointly operated by the National
Aeronautics and Space Administration (NASA) and the U. S.
Geological Survey (USGS), has been collecting space-based
imagery with moderate spatial resolution of the Earth's
surface since the launch of its first satellite in 1972. This
series of land-observing satellites has created a historical
archive that is unmatched in quality, spatial coverage, and
length. Landsat 8, launched on 11 February 2013, is the newest
satellite in the Landsat program. Furthermore, NASA and
USGS have started work on Landsat 9, which is planned to be
launched in 2023. Landsat 9 will extend the Landsat program
to half a century (NASA, 2015a). Furthermore, the Landsat
program will potentially be sustained operationally further by
Landsat 10 (Loveland and Dwyer, 2012).

The spatial resolution of Landsat observation is important.
On the one hand it is coarse enough for continuous global
coverage, and on the other hand it is detailed enough to
characterize human-scale processes. With the use of Landsat
observations, it is possible to investigate human interactions
with the environment in a global scale (NASA, 2015b). At
present, the data collected for overmore than forty years by the
Landsat program provide a unique database for global change
research. The continuity characterized with consecutive, tem-
porally overlapping observations and cross-sensor calibration,
makes Landsat observation an important asset for climate
studies (Trenberth et al., 2013). Furthermore, thanks to the free
data policy (Woodcock et al., 2008; Loveland and Dwyer, 2012)
the Landsat data have been adopted in a wide range of studies
and applications. Accordingly, the Landsat program has signif-
icantly benefited both the academic community and societal
applications such as the management of water, land, forest,
wildlife, and natural hazards. The annual economic benefits
in 2011 obtained from the Landsat imageries were estimated to
be $2.19 billion, although this estimate may be conservative
(Loomis et al., 2015).

So far, the thermal images acquired by Landsat sensors,
including the Thematic Mapper (TM) on-board Landsat 4/5,
the Enhanced ThematicMapper Plus (ETM+) on-board Landsat
7, and the Thermal Infrared Sensor (TIRS) on-board Landsat 8,
have high spatial resolution (Table 1) for monitoring urban
thermal environment (Sobrino et al., 2012; Xiao et al., 2007),
especially when compared with the coarser-resolution ther-
mal images collected by AVHRR (or Advanced Very High
Resolution Radiometer) and MODIS (or MODerate Resolution
Imaging Spectroradiometer). Landsat 4 was operated over
10 years from 1982 to 1993. Landsat 5 successfully collected
data from its launch in 1984 until the communication system
failures in November 2011, and finally went out of commission
in June 2013 (USGS, 2013b). Landsat 7, launched in April 1999,
has acquired observations for more than 17 years so far.
Actually, a thermal channel was firstly embedded in Landsat 3
MSS; however, its poor performance and few data-acquisition
make application of its data impossible (Arvidson et al., 2013).
Compared with its predecessors, Landsat 8 has two separate
push-brooms scanners, including the Operational Land Imager
(OLI) and the TIRS. Specifically, the OLI has two additional
channels provided with narrower bandwidths (i.e., Band 1 and
Band 9), while the TIRS has two thermal channels in the range
of 10.0–13.0 μm (Table 1). Relative spectral responses (RSRs) for
the channels are shown in Figs. 1 and 2. The two new bands of
Landsat 8 OLI are not shown in Fig. 1. Effective wavelengths



Fig. 1 – Relative spectral responses (RSRs) for Landsat channels within (a) the visible and near infrared regions and (b) the
short-wave infrared regions.
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for thermal channels given in Fig. 2 are 11.154 μm (Landsat 4
TM), 11.457 μm (Landsat 5 TM), 11.269 μm (Landsat 7 ETM+),
10.904 μm (Landsat 8 TIRS1), and 12.003 μm (Landsat 8 TIRS2).
The effective wavelengths are obtained through a “Trapezoid”
strategy (Hu et al., 2011). All RSRs used are described in https://
landsat.usgs.gov/instructions.php.

According to the Web of Science™, publications of Landsat
applications on urban heat island effect have increased sig-
nificantly over the last two decades. For example, when the
“Landsat”, “Thermal”, and “Urban heat island” are used jointly
as keywords, search results (on 10 February 2017) show 155
publications during 2011–2016 while only 6 publications
during 1995–2000 (http://apps.webofknowledge.com/ WOS_
GeneralSearch_input.do?product = WOS&SID = 3Fe6XEUkTRqj
5YuOBKd&search_mode = GeneralSearch). The significant in-
crease in publications suggests the growing availability and
interests in Landsat data for investigating urban thermal
environment. The increase applications of Landsat data
also reminds us the issues associated with data quality and
accuracy. Major concerns discussed here are on the challenges
confronting the continuity of quantitative applications of
Landsat observations in urban thermal environment, which is
usually represented by land surface temperature (LST). How-
ever, it is not intended to review all publications, rather it is
Fig. 2 – RSRs for the Landsat thermal channels.
to show readers and data users several related aspects, which
include urban surface emissivity, atmospheric correction,
radiometric calibration, and other issues (i.e., data gaps, sensor
differences, validation, and data/products consistency). At last,
two new strategies are proposed to overcome the challenges
in LST retrieval from single thermal channel imagery, which
are specifically in the requirements of atmospheric parameters
and emissivity.
1. The single-channel method for LST retrieval

The single-channel method (Jiménez-Muñoz and Sobrino,
2003) is generally the only way to obtain LST from Landsat
thermal imagery (i.e., Landsat 4/5 TM and Landsat 7 ETM+),
except for Landsat 8 TIRS, which has two thermal infrared
channels (Table 1 and Fig. 2). However, calibration uncer-
tainties of Landsat 8 TIRS are more obvious, especially for
TIRS2, compared with the thermal channels of its predeces-
sors (Barsi et al., 2014). Accordingly, the single-channel
method can be used for Landsat 8 at present, when TIRS1 is
usable (Barsi et al., 2014). Based on the single-channel
algorithm (Jiménez-Muñoz and Sobrino, 2003), LST can be
obtained by Eqs. (1)–(3).

Ts ¼ γ
1
εe

ψ1Lobs þ ψ2ð Þ þ ψ3

� �
þ δ ð1Þ

γ ¼ c2Lobs
T2
obs

λe4

c1
Lobs þ

1
λe

 !" #−1
ð2Þ

δ ¼ Tobs−γLobs ð3Þ

where Lobs (W·m−2·sr−1·μm−1) is the at-sensor radiance, and
Tobs (K) is the at-sensor brightness temperature. λe (μm)
is the effective wavelength, and εe is the surface emissivity.
γ and δ are two parameters related to the Planck's law,
whereas ψ1, ψ2 (W·m−2·sr−1·μm−1), and ψ3 s (W·m−2·sr−1·μm−1)
are atmospheric functions which can be estimated using



83J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 5 9 ( 2 0 1 7 ) 8 0 – 8 8
atmospheric water vapor content (Jiménez-Muñoz and Sobrino,
2003). Two constants are c1=1.19104×108 W⋅μm4⋅m−2⋅sr−1 and
c2=14387.7 μm/K.

For thewidelyused single-channel algorithm (Jiménez-Muñoz
andSobrino, 2003), the required inputs include surface emissivity,
atmospheric water vapor content, and well calibrated radiance.
However, in most cases, especially for general users, it is
impossible to obtain these inputs accurately (Chen et al., 2014a,
2014b, 2015).
2. Challenges for the quantitative application over
urban area

2.1. Urban surface emissivity

Most urban surfaces consist of different manmade materials
with distinct reflectance and thermal emission. This results
in significant challenges in urban LST retrieval caused by the
uncertainty of urban surface emissivity estimation, especially
when single-channel method is used (Chen et al., 2016a; Yang
et al., 2015). The influences of emissivity uncertainty on LST
retrieval are regulated by climate and geography backgrounds
(Chen et al., 2016a). Generally, the uncertainty in surface
emissivity should be less than 0.01 to achieve a high accuracy
in the final LST estimation (about 0.5 K), whereas a 0.02
uncertainty in surface emissivity may cause a LST error larger
than 1.0 K. A more obvious LST error may be resulted in under
a dry and warm condition (Chen et al., 2016a; Valor and
Caselles, 1996; Trigo et al., 2008).

Emissivity variation of manmade materials is shown by
the box plot in Fig. 3, which is based on the spectra samples
from the ASTER Spectral Library Version 2.0 (Baldridge et al.,
2009). Totally, 36 spectra of manmade materials are selected
in this paper, mainly considering the differences of wave-
length coverage between the channels' RSRs and the spectra.
Generally, obvious emissivity variation is recorded, and the
variation amplitude (range between the two whiskers in the
box plot, Fig. 3) is approximately 0.1 for each individual
thermal channel. The emissivity variation suggests that it
is difficult to determine a suitable value to represent the
emissivity of manmadematerials over urban area. For about a
Fig. 3 – The effective emissivity of manmade materials spectra s
figure presents the enlarged plots correspondingly (with the vert
half of these selected samples, the emissivity uncertainty is
more than 0.02 if the median value is used as the representa-
tive emissivity. Accordingly, a larger LST error (>1.0 K) occurs
in about 50% of the samples. However, the findings based on
the ASTER Spectral Library Version 2.0 here just provide an
incomplete insight into the challenges associated with urban
surface emissivity. Furthermore, widely used approaches,
in particular, the classification-based method and the vegeta-
tion index-based method, are likely unable to meet the
demands for accurate estimation of urban surface emissivity
(Chen et al., 2016a). Currently, the spectra (i.e., manmade
materials) available for urban remote sensing are limited, with
respect to spectral resolution, spectral domain as well as the
number of samples. Accordingly, more spectra of manmade
materials covering more diverse urban settings are needed
(Chen et al., 2016a).

Over urban areas characterized by heterogeneous land-
scape, the surface thermal anisotropy is generally significant
(Voogt and Oke, 1998, 2003; Lagouarde et al., 2004, 2010; Sun
et al., 2015). The angular variation of surface emissivity
and the relative fractions of different components (e.g., the
presence of vegetation) within the instantaneous field of view
will result in directional LST variation (Lagouarde et al., 2004).
Meanwhile, the variability of microscale temperature makes
substantial contributions to the thermal anisotropy (Voogt,
2008). Additionally, effects caused by urban geometry should
be taken into account in urban LST estimation (Yang et al.,
2015). It becomes a complicated issue that obtaining urban LST
from remote sensing data (Voogt and Oke, 2003), in particular,
for the retrieval from only one thermal band (e.g., Landsat 4/5
TM and Landsat 7 ETM+).

2.2. Atmospheric correction

Atmospheric correction is important for LST retrieval from
Landsat observation. For the current single-channel method,
atmospheric water vapor content is a necessary input
(Jiménez-Muñoz and Sobrino, 2003). Meanwhile, atmospheric
heterogeneity is always demonstrated at regional scale (Chen
et al., 2010a). However, atmospheric correction and the
heterogeneity of atmosphere have always been ignored, or
the atmospheric parameters acquired at one station/site were
elected from ASTER Spectral Library Version 2.0. The right
ical axis ranging from 0.86–0.99).
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used as the representative value over the entire image (Chen
et al., 2010a). The MODIS standard atmospheric products,
including MOD 05 and MOD 07, are considered good resources
for atmospheric correction (Chen et al., 2010a, 2011a; Li et al.,
2007; Jiménez-Muñoz et al., 2010). However, obvious uncer-
tainty in the MODIS standard products (Meng et al., 2007) may
make the atmospheric correction uncertain. Using MODIS
atmospheric products for atmospheric correction improves
the final LST accuracy for some cases (Chen et al., 2010a,
2011a, Jiménez-Muñoz et al., 2010) while it does not show any
benefits for other cases (Chen et al., 2015). This uncertainty
may hamper the application of MODIS atmospheric products
in atmospheric correction. Findings indicate the necessity to
validate and improve MODIS atmospheric products before
application (Chen et al., 2015).

2.3. Radiometric calibration

Radiometric calibration is the procedure for obtaining the
at-sensor radiance from digital records (i.e., digital number
records) to generate brightness temperature and the final LST
retrieval (see Eqs. (1)–(3)). Uncertainty in radiometric calibration
usually becomes increasingly obvious as the sensor decays
during in-orbit operation. Radiometric problems were found in
Landsat sensors (Barsi et al., 2006, 2007, 2014; Markham and
Helder, 2012). According to radiative transfer model, a sensitiv-
ity model to assess impacts of the uncertainty in radiometric
calibration on LST retrieval is obtained (Chen et al., 2016b):

ΔTs ¼ ∂Ts

∂B Tsð Þ
1
τεe

ΔLobs ð4Þ

where ΔLobs (W·m−2·sr−1·μm−1) is the radiometric calibration
error, and ΔTs (K) is the LST uncertainty resulted from
radiometric calibration error. τ is the atmospheric transmissiv-

ity.
∂Ts

∂BðTsÞ showing the relationship between LST and radiance

(as derivation) can be obtained according to the Plank's law,
through a numerical simulation (Chen et al., 2016b).

Investigations show that a 0.1 unit (W·m−2·sr−1·μm−1) error
of the radiometric calibration may result in a LST error
of approximately 1.0 K for a moderate case (Chen et al.,
2016b). As shown in previous findings, an average error in
radiometric calibration of TM during 1999–2006 was about
0.12 W·m−2·sr−1·μm−1 (Barsi et al., 2006). Uncertainty in the
radiometric calibration of Landsat 8 TIRS is still obvious,
specifically for TIRS1 and TIRS2, inwhich the calibration errors
are within ±0.12 W·m−2·sr−1·μm−1 and ±0.20 W·m−2·sr−1·μm−1,
respectively (Barsi et al., 2014). The calibration of Landsat 8
TIRS bands is not truly correct until the stray light contribution
is removed (Barsi et al., 2014).

2.4. Validation

Validation is the comparison of retrieved results with refer-
ence data to assess retrieval quality, which is a critical and
significant procedure to ensure the retrieved results are
suitable for the desired applications (Rizwan et al., 2008; Li
et al., 2013). The accuracy and precision of the retrieved
results are determined through the validation procedure,
provided that the errors or uncertainties in the reference
data are fully understood and accounted for (Hollmann et al.,
2013). Generally, the validation procedure is conducted by
directly comparing the retrieved results with in situ measure-
ments. However, the direct validation is often limited with
respect to (1) spatio-temporal coverage of in situ observations
and (2) the scale contrast/difference between satellite records and
in situ measurements (Zeng et al., 2015). Moreover, the locations
of in situ measurements are often biased (e.g., located within a
certain land cover type) (Camacho et al., 2013; Oltra-Carrió et al.,
2012). Thus, in practice, indirect validation, in which other
products are used as the reference, is often conducted (Chen
et al., 2015; Zeng et al., 2015). When the indirect validation is
used, however, we need tomake sure how the reference data is
generated. If the data served as reference suffer from limita-
tions and uncertainties, comparison and validation should be
used with caution. Accordingly, a validation with professional
guidelines is essential (Zeng et al., 2015).

In particular, for urban areas which are covered by mixture
of diverse materials with complicated composition and geom-
etry, it is difficult to obtain sufficient in situ measurements for
validation purpose. In Oltra-Carrió et al. (2012), validation data
are obtained at four sites, of which two are building roofs. Long
term records with large coverage for validation purpose are
even less. To solve the spatial coverage issue of in situ data,
thermal imagery with high spatial resolution collected by
satellite or airborne sensors can be used (Voogt, 2008). However,
the limitation of flight campaign is usually associated with the
limited temporal coverage (Zeng et al., 2015) and the geometric
rectification issues inherent in airborne sensed data (Gluch
et al., 2006).

2.5. Other issues

Normalized Difference Vegetation Index (NDVI, Eq. (5)) is a
widely used indicator for mapping and monitoring vegetated
areas using multispectral remotely sensed data. Meanwhile,
Normalized Difference Built-Up Index (NDBI, Eq. (6)) is used
to map built-up areas through a quick and objective process
(Zha et al., 2003). BothNDVI andNDBIwere used as indicators to
characterize urban landscape and to model urban thermal
environment, such as in Xiao et al. (2007) and Xiong et al. (2012).

NDVI ¼ ρNIR−ρRed
ρNIR þ ρRed

ð5Þ

NDBI ¼ ρSWIR−ρNIR

ρSWIR þ ρNIR
ð6Þ

where ρRed, ρNIR, and ρSWIR refer to surface reflectance values of
Band 3, Band 4, and Band 5 of Landsat 4/5 TM and Landsat 7
ETM+, while they refer to Band 4, Band 5, and Band 6 of Landsat
8 OLI (Table 1), respectively.

As shown by the spectra of manmade materials selected
from the ASTER Spectral Library Version 2.0, minor differ-
ences in both NDVI and NDBI are shown between Landsat 4/5
TM and Landsat 7 ETM+, with absolute discrepancy being
less than 0.002. However, more significant differences in
both NDVI and NDBI exist between Landsat 8 OLI and its
predecessors (i.e., Landsat 4/5 TM and Landsat 7 ETM+)
(Fig. 4). The obvious variation in sensor settings between the
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Landsat 8 OLI and its predecessors, as shown in Fig. 1, may be
the main cause for the between-sensors discrepancies. The
between-sensors discrepancies may become more significant
in applications when atmospheric impacts and land cover
conditions are considered (Li et al., 2014). Differences in measur-
ing vegetation indices among Landsat sensors have been inves-
tigated (Li et al., 2014; Xu and Guo, 2014), whereas related
investigations on NDBI have not been discussed widely yet.

At the same time, differences are there in spatial resolution
among the thermal channels, although the data (i.e., Level 1 T)
are provided after being re-sampled to 30 m resolution
currently (Table 1). According to the header file and Chander
et al. (2009), a cubic convolution method is used in the
re-sampling procedure. It is necessary to investigate whether
artifacts are introduced during the re-sampling procedure,
considering the complexity of the urban surface heterogeneity
and the scaling effect in urban thermal environment (Chen
et al., 2008; Liu and Weng, 2009, Pu et al., 2006). Landsat 8
TIRS data, acquired with improved Signal-to-Noise Ratio, are
delivered with 30 m resolution and with a 16-bit radiometric
quantization range (i.e., Level 1 T, see USGS, 2013a). Mean-
while, the Landsat 4/5 TM and Landsat 7 ETM+ thermal
channel images are delivered with 8-bit range (Chander et al.,
2009). The quantization level is “the number of numerical
values used to represent a continuous quantity” (USGS, 2015b).
The disparities in radiometric quantization and different gain
modes may affect the comparability among different sensors
(or channels) in view of absolute values (Liu et al., 2011).
Uncertainty caused by the differences of sensor settings may
hamper direct comparison among Landsat sensors, which
makes continuity of quantitative applications difficult. There-
fore, related uncertainty should be eliminated, especially when
precise surface change detection or temporal is needed.

The Scan Line Corrector (SLC) of Landsat 7 ETM+ has failed
since 31 May 2003. This SLC failure (SLC-off) has limited the
quantitative applications of Landsat 7 ETM+ data to some
extent.What isworse, Landsat 5 TMhad been suspended since
November 2011, resulting from the failure of its electronic
component that is vital to data transmission. Landsat 5 was
finally terminated on 5 June 2013 (USGS, 2013b). The data
gap resulted from these problems may affect the continuity
Fig. 4 – Scatter plot of Normalized Difference Vegetation Index (N
selected manmade spectra.
of Landsat program, even the Earth observation. Currently,
Landsat higher level science data products provided publicly
include “surface reflectance higher level data products” and
“surface reflectance-derived spectral indices” (USGS, 2015a).
However, the Landsat 7 ETM+ SLC-off data, used as inputs for
higher level products, are still not gap-filled. Several ap-
proaches have been proposed to resolve the SLC-off issue
(Scaramuzza and Micijevic, 2004; USGS and NASA, 2004; Chen
et al., 2010b, 2011c). Relativelymuch attention has been paid to
the multispectral bands, whereas a few investigations have
been conducted for the thermal channel (Chen et al., 2011b,
2012). However, the uncertainty resulted from recovering
procedure should not be ignored (Chen et al., 2011b). More
efforts are needed to find proper and robust solutions for the
SLC failure, mainly due to both the valuable legacy of the
Landsat series and the data open policy (Woodcock et al., 2008;
Loveland and Dwyer, 2012).

Furthermore, spatial patterns of urban LST show differences
between daytime and nighttime observations (i.e., diurnal
variations) (Buyantuyev and Wu, 2010; Rizwan et al., 2008).
Therefore, representative LST observations throughout the
diurnal cycle should be acquired (Sobrino et al., 2012). Unfortu-
nately, due to inefficiency of its temporal coverage, LST derived
from Landsat observation may be less useful for assessing
shorter-term urban thermal environment, such as the condi-
tion during heat events (White-Newsome et al., 2013).
3. New strategies for LST retrieval over urban areas

As mentioned above, for the current single-channel method,
valid surface emissivity and atmospheric water vapor content
are necessary prerequisites (see Section 2.1 and Section 2.2).
However, usually, surface emissivity and atmospheric parame-
ters arenot readily accessible to general users (Chenet al., 2014b,
2015). When variables estimated from remote sensing imagery
are used as inputs for LST retrieval, their uncertainties are often
ignored. These difficulties can possibly limit the application of
current single-channel algorithms (Chen et al., 2014b). Therefore
a new retrieval methodology is needed. Two innovative
approaches have been developed, including the single-channel
DVI) and Normalized Difference Built-Up Index (NDBI) for
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method based on temporal and spatial information (MTSC)
(Chen et al., 2014b) and the image based single-channelmethod
(IBSC) (Chen et al., 2015). These newly developed methods are
for estimating LST accurately from at-sensor radiance observed
by one thermal channel, evenwithout any accurate information
about the atmospheric parameters and land surface emissivity
(Chen et al., 2014a, 2014b, 2015). Preliminary results show good
performances of the new methods, although currently only
the HJ-1B cases have been shown. Further investigations are
being undertaken to refine these innovative methodologies for
Landsat sensors. How to ensure retrieval accuracy and consis-
tency is critical to quantitative applications of these methods.
However, a retrieval method possibly shows varied perfor-
mances in different cases (e.g., temporal differences, and
different climatological and geographical conditions).
4. Conclusions

Thermal imagery from Landsat sensors (i.e., Landsat 4/5 TM,
Landsat 7 ETM+, and Landsat 8 TIRS) has been widely used for
urban thermal environment (Weng, 2009). However, quanti-
tative application of the thermal imagery is always limited.
This is duemainly to the inaccessibility to adequate information
about the atmosphere and the urban heterogeneitywith respect
to surface emissivity and reflectance, as well as problems in
radiometric calibration and validation. Additionally, to take
advantage of the outstanding legacy of the Landsat program,
challenges related to sensor decay, the differences of settings
among sensors, as well as the Landsat 7 ETM+ SLC-off problem
are noteworthy. The consistency and accuracy of retrieved
products, as well as the continuity of data collection, are critical
for desired investigations. However, in most case studies,
quantitative retrieval results are not guaranteed and even not
assessed fully, due mainly to the inaccessibility to adequately
proper reference data for validation.

Several climate data records (CDRs) programs are in prog-
ress,which are intended to produce trustworthy information on
global and regional changes (Hollmann et al., 2013; USGS, 2015a;
NOAA, 2015; NASA, 2015c, Zeng et al., 2015). USGS is capitalizing
on the valuable Landsat time series to generate higher level
data products (USGS, 2015a). Currently, twohigher level Landsat
products are available publicly, including “surface reflectance
higher level data products” and the “surface reflectance-derived
spectral indices”. Several other higher level products, including
LST, are being planned for the future (https://landsat.usgs.gov/
CDR_ECV.php). Merits of these products are significant, but the
importance of product quality and consistency is necessarily to
be emphasized, as shown by the definition of CDR (NRC, 2004),
considering their potential applications for quantitative inves-
tigations such as for monitoring urban thermal environment.
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