Buoyancy and turbulence-driven atmospheric circulation over urban areas

Yifan Fan1,*, Julian Charles Roland Hunt1,2,3, Yuguo Li1

1. Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
2. Department of Earth Sciences, University College London, London, WC1E6BT, UK
3. Malaysian Commonwealth Studies Centre, Cambridge, CB23RF, UK

ARTICLE INFO

Article history:
Received 26 November 2016
Accepted 23 January 2017
Available online 9 February 2017

Keywords:
Urban heat island
Buoyancy and turbulence-driven
Eddy structures
Atmospheric circulation
Pollutant dispersion

ABSTRACT

In the buoyancy and turbulence-driven atmospheric circulations (BTDAC) that occur over urban areas where the approach means wind speeds are very low (less than turbulent fluctuations and typically <3 m/sec), the surface temperatures are significantly higher than those in the external rural areas, and the atmosphere above the mixing layer is stably stratified. In this paper, the mechanisms of BTDAC formation are studied through laboratory experiments and modelling, with additional low-level inflow from external rural areas and a divergent outflow in the opposite direction in the upper part of the mixed layer. Strong turbulent plumes in the central region mix the flow between lower and higher levels up to the inversion height. There are shear-driven turbulent eddies and weaker buoyant plumes around the periphery of the urban area. As the approach flow is very weak, the recirculating streamlines within the dome restrict the ventilation, and the dispersion of pollution emitted from sources below the inversion height leading to a rise in the mean concentration. Low-level air entrained from rural areas can, however, improve ventilation and lower this concentration. This trend can also be improved if the recirculating structure of the BTDAC flow pattern over urban areas breaks down as a result of the surface temperature distribution not being symmetrical, or as the approach wind speed increases to a level comparable with the mean velocity of circulation, or (except near the equator) the urban area is large enough that the Coriolis acceleration is significant.

© 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Introduction

Since cities were first established, their leaders and communities have worked in many different ways to understand and improve their natural and social urban environments. Several studies (e.g., Eliasson, 2000; Hunt et al., 2005) have identified important differences in the urban atmospheric environment, such as whether the mean winds approaching the city are significant in relation to the magnitude of local turbulence. Typical of low latitude cities, the circulation is characterised by convergent inflow in the lower atmosphere and divergent outflow at a higher atmospheric level, with turbulent plumes rising up to the inversion or mixing height. Field data, experiments and numerical simulations show that in these quasi-static conditions, the depth of the mixing layer is greatest over the central part of the city (as in London; Hunt,

http://dx.doi.org/10.1016/j.jes.2017.01.009
1001-0742/© 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
et al. (2016), Wang et al. (2015) and Yin et al. (2016). Modelling in the urban area such as, Zhu et al. (2015), Long...BTDAC mechanism can be used in pollutant concentration...mixing heights between the central ($z_c$) and external regions ($z_e$) are larger in the evening and at night than during the day. The mean inflow is primarily driven by buoyant thermal forcing by day and by a shallow thickness gravity-current in the evening, driven inwards by the cool air from near the periphery. Also note the variation of the turbulence structure within and above the mixed layer, illustrated in Fig. 2. BTDAC: buoyancy and turbulence-driven atmospheric circulations.
where $E_u$ is the energy supplied by the urban (anthropogenic heat flux and surface sensible heat flux). $E_{\text{tur}}$ is the energy exchange at the dome boundary due to turbulence. $E_{\text{diss}}$ is the energy dissipated due to the viscosity and friction. $E_r$ is the energy released in the rural area (negative sensible heat flux in the rural area due to radiative cooling in the rural surfaces).

Previous researchers have described the horizontal extension of the urban dome at different times of the day and night, as summarised in Table 1.

![Diagram](Image)

**Fig. 2** – A simplified model for mean circulating flow $U$ in the edge region driven by the strong gradient in thermal convection ($U \approx \sigma_w > U_0$) over a horizontal distance $\Delta L$. $x$ and $z$ are the horizontal and vertical coordinates respectively. $\sigma_w$ is the standard deviation of the vertical velocity. $U_0$ is the synoptic wind speed. $\Theta$ represents potential temperature. $\Delta \Theta_0$ is the overall potential temperature jump between the urban center and the rural area. $L$ is the radius of the urban area. $h_s$ and $z_i$ are surface layer height and mixed height respectively. The red solid curve represents the temperature difference profile across the horizontal distance $\Delta L$ in the urban edge region. The red dash line and arrows illustrate the thermal plumes. Note that the inward and outward shear flows shown in Fig. 1 are stimulated by this recirculation at the edge region.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Dome size</th>
<th>Dome time</th>
<th>Frequency of occurrence</th>
<th>Further remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryu et al. (2013)</td>
<td>The horizontal extension is</td>
<td>17:30 Local</td>
<td>10%</td>
<td>Computational fluid dynamics; city size 20 km.</td>
</tr>
<tr>
<td></td>
<td>approximately three times the size</td>
<td>Standard Time (LST)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of the city.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lemonsu and Masson (2002)</td>
<td>Breeze extends horizontally for</td>
<td>Afternoon</td>
<td>Approximately</td>
<td>CFD simulation; Paris simulated with a 20–30 km</td>
</tr>
<tr>
<td>Eliasson and Holmer (1990)</td>
<td>more than 50 km beyond the city</td>
<td>Night-time</td>
<td>10%</td>
<td>diameter.</td>
</tr>
<tr>
<td></td>
<td>centre.</td>
<td></td>
<td></td>
<td>Field measurements; city diameter approximately 10</td>
</tr>
<tr>
<td></td>
<td>The BTDAC extends 40–70 m in the</td>
<td></td>
<td></td>
<td>km; if background wind &gt;3 m/sec, no BTDAC observed.</td>
</tr>
<tr>
<td></td>
<td>vertical direction and 20–26 km in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the horizontal direction.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barlag and Kuttler (1991)</td>
<td>Horizontal extension at 13:00 (19:00)</td>
<td>Day-time</td>
<td>About 10%</td>
<td>Field measurement. Urban diameter 20 km.</td>
</tr>
<tr>
<td>Ganbat et al. (2014)</td>
<td>LST is 2.0 (3.9) times the size of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the city.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidalgo et al. (2008a)</td>
<td>Twice the diameter of the city</td>
<td>Day-time</td>
<td></td>
<td>CFD simulation</td>
</tr>
<tr>
<td></td>
<td>(Toulouse, France).</td>
<td>(12:00–18:00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidalgo et al. (2008b)</td>
<td>Two to three times larger than the</td>
<td>Day-time</td>
<td></td>
<td>Field measurement; urban breeze increases in</td>
</tr>
<tr>
<td></td>
<td>city.</td>
<td>(12:00–18:00)</td>
<td></td>
<td>intensity from 2 m/sec at 12:00 Coordinated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Universal Time (UTC) to 5–6 m/sec at 18:00 UTC.</td>
</tr>
</tbody>
</table>

BTDAC: buoyancy and turbulence-driven atmospheric circulations.
Bohnenstengel et al. (2011) and Hunt et al. (2012) reported similar results as those in Table 1 on the horizontal extension of mean circulations.

Estimates and models of the mixed height $z_i$ of BTDAC at the urban centre were proposed by many authors, including Catalano et al. (2012), Cenedese and Monti (2003), Kristóf et al. (2009), Moroni and Cenedese (2015) and Yoshikado (1992). An approximate consensus was that the mixed height at the urban centre, $z_i$, can be expressed in the form of Eq. (2), as follows:

$$z_i/D = AFr.$$  \hspace{1cm} (2)

where $A$ is a constant determined from experiments, $Fr = u_0/ND$ is the Froude number, $u_0$ is the scale of the horizontal component of the mean and eddying velocity as defined by $(gH_d D/(\rho_c p)^{1/3}$ where $H_d$ is the surface heat flux in the urban area, $N$ is the background buoyancy frequency and $D$ is the urban diameter. $g$ is the gravity acceleration. $\beta$, $\rho$ and $c_p$ are the thermal expansion rate, density and thermal capacity of the fluid.

1.2. Diurnal variations of the structure of BTDAC

However, the mixing height $z_i$ and the overall circulation BTDAC vary in space and time between rural and urban regions and during the diurnal cycle. Typically during the day convective motions driven by solar radiation and the value of $z_i$ (with typical values of 1–3 km) are broadly similar between rural and urban regions (with differences depending on the surface and building characteristics), with convective cells in the central area and roll structures and less intense turbulence associated with mean shear in the periphery (Falasca et al., 2013; Ryu et al., 2013). The gradients in the large scale turbulence drive the mean circulation – with the maximum inwards and outward radial mean velocity driven by the gradients in turbulence (Fan et al., under review).

The mean horizontal-velocity scale for these BTDAC flows in the day-time, $U_d$, is determined by $H_u D/H_c$ the difference in surface heat flux between the urban and rural areas and by the mixed height in the urban area $z_i$ which was proposed by Hidalgo et al. (2010) and is shown in Eq. (3).

$$U_d = \left[g\beta z_i (H_u - H_d)/(\rho_c p)\right]^{1/3}. \hspace{1cm} (3)$$

Note that $U_d$ is the maximum velocity scale near the periphery of the urban area and also is assumed to be large compared to the mean velocity $U_n$ of the approach wind outside the urban area.

In the evening and during night-time periods large differences develop between urban and rural flow structure of the mean flow and turbulence. Typically in rural areas, $z_i$ decreases to less than 100 m in the early evening with the cool air moving near the surface towards the central area. (e.g., Hunt et al., 2012). At the same time over the central region of the city, the mixing height $z_i$ remains much larger than in the rural value until late in the evening when it decreases to about 200 m (e.g., Xie et al., 2013). During the quasi-steady night-time period the mean temperature gradient below the inversion is generally weakly stable, as a result of advection of cool air from rural areas, and interactions with the inversion layer.

An estimate of the velocity scale of the mean BTDAC at evening/night periods, $U_n$, which was proposed by Lu et al. (1997b), is given in Eq. (4).

$$U_n = \left[g\beta z_i D/(\rho_c p)\right]^{1/3} \hspace{1cm} (4)$$

where $g$ denotes gravitational acceleration, $\beta$ is the thermal expansion rate, $D$ is the diameter of the urban area, $H_d$ is the difference between the surface heat fluxes for the urban and rural area, $\rho$ denotes fluid density and $c_p$ is fluid heat capacity.

Note that the velocity scale in the day-time $U_d$ and the velocity scale in the night-time $U_n$ are different as different length scales and heat fluxes are used.

This is approximately equivalent (Hunt et al., 2012) to the inflow gravity current $U_{gc}$ from the rural to urban areas, which is expressed as Eq. (5).

$$U_{gc} \sim 0.6(g\beta z_i \Delta T)^{1/2} \hspace{1cm} (5)$$

where $\Delta T$ is the temperature difference between the urban area and the adjacent rural area.

This is also the approximate speed of the front, which shows that the time of evening transition over the whole urban area is of order $D/U_{gc}$ (i.e. 3–5 hr for large cities of order 30 km radius). Note that the height of the mixed layer in the central region can remain as high as 500–1000 m which is significantly greater than that in the rural and outer urban areas. Thereafter during the quasi-steady night-time period, in BTDAC there is a lower urban mixed layer height $z_i$ which is of order 200–300 m and a weaker mean circulation.

1.3. Coriolis effects in BTDAC in urban areas in temperate and subtropical latitudes

For mega cities in temperate and subtropical latitudes, the inflow in the lower part of the mixed layer is deflected by the Coriolis acceleration, which generates a mean velocity $V_f$ in the cyclonic direction parallel to the periphery of the urban area.

During the day and night-time periods when the eddy motions and mean circulation are in an approximately steady state, the dynamics governing $V_f$ is the balance between the Coriolis acceleration and the gradients of eddy stresses, with magnitude shown as Eq. (6) near the periphery.

$$V_f \sim fU_p/(\nu_e/\Delta z)^2 \hspace{1cm} (6)$$

where $\nu_e$ is the eddy viscosity in the mixed layer which is stronger by day than that by night. $f$ is the Coriolis parameter. Typically $V_f$ is of order 1 m/sec for a large urban area. Since in most situations there is a weak mean flow $U_o$ outside the urban area, the deflected Coriolis flow, as shown in Fig. 3 extends in the wake downwind of the urban area (Cheng and Chan, 2012).

In the transitional evening period for large urban areas, Coriolis acceleration deflects the gravity current in a cyclonic direction. The typical magnitude of $V_f$ is of order 1 m/sec (Hunt and Simpson, 1982). The dynamics of typical unsteady urban gravity current with Coriolis differ significantly from
2. Experimental and modelling studies of BTDAC

Physically-based theoretical conceptual models and reduced-scale models in laboratory experiments simplify the problem and enable researchers to identify the main physical dynamics of BTDAC. These apply in certain ideal conditions and with ideal geometries. They can produce reliable results and enable quantitative analysis of various factors, but scaling is always an issue, and it is difficult to model the rotation effect on a reduced-scale. Computer simulations in conjunction with the above methods provide an effective method for the quantitative and qualitative description of realistic urban environments.

New measurement data, which now include Lidar, tower data and high resolution satellite mapping of surface temperature as well as conventional meteorological surface variables, provide realistic descriptions over urban and rural areas, in particular the main spatial and time dependent features of BTDAC (e.g. as reviewed in Hunt et al., 2016). They accurately represent the real situation, and are able to identify structures and mechanisms determining the flow and thermal distributions. Compared with the other methods, field measurements also incur the highest costs and require the most labour and time. Furthermore, boundary and background conditions cannot be controlled when taking field measurements.

2.1. Mathematical analytical models

Lu et al. (1997b) proposed a hydrostatic model used to obtain the mean horizontal-velocity scale by solving the bulk-continuity, momentum and energy-conservation equations. The horizontal-velocity profile was obtained by solving a momentum equation with proper boundary conditions. Linear models provide another means of treating and solving governing equations. In essence, linear methods entail the linearization of governing equations with the assumption of minor perturbation. The governing equations are integrated into one equation to describe the flow field with proper boundary conditions. A stream function is used to reduce the number of unknown parameters in the momentum equation, and Fourier transform is performed to solve the equation. Vukovich (1971) used linear models to obtain a vertical cross section flow field. Mori and Niino (2002) used non-linear scaling to explore the evolution of BTDAC over time. The development of the flow was classified into three regimes: a turbulent diffusion regime, a low-level gravity-current regime and a gravity-wave regime above the mixing height.

If the temperature difference is significant for a long enough radial distance, the BTDAC is affected by the Coriolis force, which limits the horizontal extension of the circulation to achieve a thermal wind balance, as described in Section 2.3.

2.2. Field measurements

Field measurements are the most direct way of investigating flow fields over urban areas and in the urban canopy layer.
Snyder (1981) provided guidelines for the experimental design of field studies, and data collection and measurement points. However, it is difficult to extract specific flow characteristics from field measurements, which represent a combination of all of the physical processes occurring in and close to the urban area under study. It is crucial for researchers to be aware of all of the possible physical processes taking place during data acquisition and to implement suitable data-processing methods to obtain meaningful and reasonable results from field data. Statistical methods and tools have been used to investigate BTDAC in early field studies. For example, Barlag and Kuttler (1991), Eliasson and Holmer (1990) and Shreffler (1979) combined field measurements with numerical simulation for mutual validation. All of the field measurements reported in the studies above confirmed that BTDAC occurs during both day and night, and indicated the importance of BTDAC to urban ventilation and pollutant dispersion.

2.3. Reduced-scale models

2.3.1. Air-tank models

Noto and Okamoto (1991) first visualised BTDAC using an interesting fumigation method with a reduced-scale air-tank model. The urban area was assumed to be a two-dimensional heated strip-source. An overall qualitative description of the circulation phenomena BTDAC was proposed. The fumigation-based visualisation method and measures were later refined by Noto (1996). Using an air-tank model, different shapes and time dependence of the convective structures were shown to vary between quasi-steady, large scale plumes for low heat flux and high stratification above BTDAC, and unsteady smaller scale plume/puffs at high heat flux and low stratification. The latter structure is also associated with low thermal capacity and low thermal conductivity of the ground surface (Hunt et al., 2003).

Although a line source generated plume is fundamentally different from an area source generated plume, BTDAC is actually an example of the latter, with a large aspect ratio; see Fan et al. (2016a), the pioneering work done by Noto and Okamoto (1991) and Noto (1996) provided new insights into BTDAC and methods of modelling BTDAC.

In air-tank experiments, it is difficult to ensure the non-dimensional parameters required for similarity between the model and the ‘prototype’ atmospheric circulation patterns, such as the Froude number, the Reynolds number and the Rayleigh number. As temperature changes rapidly after the heater is turned on, due to the small thermal storage capacity of air, it is also difficult to temporally define the quasi-steady state, and the high temperatures may violate the Boussinesq approximation. Due to these disadvantages, water-tank reduced-scale models are increasingly favoured over air-tank experiments.

2.3.2. Water-tank models

Water-tank models are the reduced-scale models most widely used to simulate BTDAC. They can be quantitatively compared with prototype BTDAC patterns in the atmosphere. Lu et al. (1997a) first visualised BTDAC in water-tank experiments using the shadowgraph technique. The temperature field was measured using the thermal couple and the velocity field was analysed by image processing. The scaling parameters for temperature, velocity and length were selected to match the flow in the water-tank models with that in the atmosphere. The experimental results agreed well with the results of the numerical simulation, the theoretical mathematical models and the field measurements, indicating that water-tank models provide an effective and accurate means of simulating BTDAC.

In research on the characteristics of BTDAC, Cenedese and Monti (2003), Falasca et al. (2013) and Moroni and Cenedese (2015) combined the use of water-tank models with new measurement techniques such as particle tracking velocimetry and feature tracking. Stable stratification can be achieved using either the heating method or the salt-water method.

Water-tank models can, however, also have limitations. (1) The process changes with time rather than being in a quasi-steady atmosphere; if heating continues and no heat sinks are present, the dome size will continue to increase during the experiment. However, the real physical processes in the atmosphere include radiative cooling in the rural area and at the top of the BTDAC. It is also difficult to simulate cooling in water-tank experiments. (2) The analogy with real BTDAC is limited by the size of the water-tank. The Reynolds number, Rayleigh number and Froude number of the modelled BTDAC differ from those of the real BTDAC. (3) Heat flux is uniform in laboratory-based water-tank experiments, which is not the case in reality. (4) Existing water-tank models (e.g., Cenedese and Monti, 2003; Moroni and Cenedese, 2015) do not accommodate the drag caused by the urban canopy layer.

3. Dispersion in BTDAC

The diurnal variations in the mean and turbulent flows in BTDAC, described above, and the form (e.g., local steady sources $Q$ or finite mass sources $M$) and locations of sources $(X_s, Y_s$ and $Z_s$) determine the patterns of dispersion over urban and adjoining rural areas. The dispersion is particularly affected by recirculating mean streamlines, intense turbulence and mean shear (Turfus, 1986, 1988); in these urban regions with diameter $D$ and urban mixing depth $z_s$, if there is a mean steady source $Q$, then the mean concentration $C$ increases with time (i.e., $C = Q/t/(z_s D^2)$); but because the streamlines also recirculate weakly outside the urban area, $C$ also increases slowly in the surrounding rural area. The growth of concentration over large urban areas during weak synoptic external winds has been observed by Banta et al. (1998), Liang and Keener (2015), Masson et al. (2008), Miao et al. (2015), Parkhi et al. (2016) and Sini et al. (1996) and results in high levels of pollution. These events occur in both summer and winter in subtropical cities such as Beijing, for example. They previously only occurred in winter periods in large temperate zone cities, such as London, but now occur in summer in northern Europe and Russia.

If a finite volume or mass $M$ is released, e.g., over a large industrial area, then for a symmetric distribution of surface temperature, the pollutant is well mixed by the turbulence and shear, and the resulting average concentration over the urban area, $C$, is approximately constant for a period of the mean circulation. After a longer time period, the concentration $C$ decreases as external rural air is entrained. However, if the surface temperature is asymmetrically distributed relative to the...
maximum temperature zone (Fan et al., under review), the ventilation can be much faster. If the central regions of the sources are located outside of the urban areas, the mean convergent inflow features into these BTDACs are particularly important.

4. Discussion

It is clear that each of the various methods of studying the BTDAC has its merits and weaknesses. Therefore, different methods in studying BTDAC may be used in combination. For example, mathematic models can be used to identify the important physical parameters. The scaled water-tank models and numerical simulations can be then used to quantitatively obtain the flow structures (mean velocity and temperature field, plumes structures and turbulent statistics) and scaling constants. The theoretical and reduced-scale experimental models can be verified by the field measurements. It would be difficult to obtain the whole velocity field to visualise the BTDAC through the field measurements due to the limitation of the available measurement techniques over such a large scale. However, the measurements (temperature, velocity and pollutant concentration) of selected locations can be used to compare with the prediction of the theoretical and reduced-scale models. Another reason for using several methods is that the structure of flow in the urban canopy is different to most types of turbulent flows -because in this case the large eddies penetrate through the whole shear layer and reinforce the internal shear layer. But different aspects of these complex flows come from the different modelling, measurement and simulations. The other point is that new lab and field measurements are enabling the mechanisms to be identified.

We have seen that the formation of BTDAC generally occurs over urban heat island areas during calm background weather conditions. The main features of the flow are convergent inflow, divergent outflow and upward flow at the urban centre. However, the detailed three-dimensional structure of BTDAC is also important both locally, such as in building-area density, building height variation, etc., and more significantly in differentially formed (e.g., circular or star shaped) zonal areas with different surface properties (e.g., inner city, suburban, green areas, etc.). As proposed by Fan et al. (2016a), the influence of the aspect ratio (the ratio of the urban diameter to the mixed height) must also be explored.

The pollutants emitted in the BTDAC covered region depend on the scale and flow structure (as explained above). Given the horizontal extension of the BTDAC of 30 km and the mean circulation speed of 2 m/sec, the time scale of total mixing is about 4 hr. Based on the study of Sells and Hay (1973), thermals and smaller scale plumes both exist in BTDAC, depending on the urban morphology (road size, building size, district size) and heating load distribution in the urban area. The upward velocities within thermals are generally greater than the mean city-scale plume circulation, which enhances the vertical mixing process. If the BTDAC is assumed to be steady and approximately symmetrical, how rapidly do the pollutants disperse around the axis of the symmetry? The dispersion is also affected by the large shear between the inflow and the outflow, which according to Hunt and Durbin (1999), tends to block the weaker thermals as they rise through the intermediate shear region in the centre of the mixed layer.

5. Conclusions

In this paper, the characteristics of BTDAC and, in the absence of a significant approach wind, the mechanisms of an idealised BTDAC formation are reviewed and discussed. BTDAC is an important focus of research on the urban climate and plays a crucial role in urban ventilation and pollutant dispersion. Various methods of investigating BTDAC are available, such as mathematical models, numerical simulations, field measurements, reduced-scale air-tank models and reduced-scale water-tank models. Air-tank models have been less frequently used in recent years, probably due to the discrepancy between the results of such models and real atmospheric data. Water-tank models offer a substitute method, proven to simulate BTDAC with ease, efficiency and precision. BTDAC is a transient process, and can interact with BTDAC generated in nearby cities. Some of the characteristics of BTDAC differ between day and night. The detailed process of pollutant mixing within BTDAC and the interaction of different areas of BTDAC offer interesting topics of future research, as city clusters continue to grow in many parts of the world.

The modelling of flow and dispersion in urban areas also depends on steady and unsteady mesoscale modelling and data in synoptic conditions outside large urban areas, such as cold fronts and sandstorms, to predict when rapid ventilation and improvements of polluted air can and will occur (e.g., Wehner et al., 2004). The formation of BTDAC can, as discussed, lead to the rapid accumulation of pollutants or an ‘explosive growth’ of the haze. Sudden changes in wind pattern and/or a slight rise in the approach wind can lead to a sudden change in wind pattern and a significant increase in ventilation (e.g., Liu et al., 2013; Wang et al., 2014). Planners should also consider that beneficial wind patterns can be artificially established when planning or altering cities to produce asymmetrical patterns of groups of buildings, infrastructure or green spaces with different thermal or aerodynamic properties, or perhaps in controlling traffic flow to optimise dispersion (Fan et al., under review).

Acknowledgment

This work is supported financially by a RGC CRF project (HKU9/CRF/12G) of the Hong Kong SAR Government. JH is grateful for support from the Newton Ungku Omar fund administered by the British Council and the Malaysian International Group for High Technology. We are grateful for input from J Stocker and DJ Carruthers of CERC Ltd., and Dr. Yasemin Akhtas of the Civil Engineering Department, UCL.

REFERENCES


