Removal of ammonium ion from water by Na-rich birnessite: Performance and mechanisms

Ya Cheng, Tinglin Huang⁎, Xinxin Shi, Gang Wen, Yuankui Sun

Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an 710055, China
Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

ARTICLE INFO

Article history:
Received 8 July 2016
Revised 25 November 2016
Accepted 8 December 2016
Available online 29 December 2016

Keywords:
Ammonium ion adsorption
Na-rich birnessite
Hydroxyl ions
Negatively charged surface
Electrostatic interaction

ABSTRACT

Na-rich birnessite (NRB) was synthesized by a simple synthesis method and used as a high-efficiency adsorbent for the removal of ammonium ion (NH₄⁺) from aqueous solution. In order to demonstrate the adsorption performance of the synthesized material, the effects of contact time, pH, initial ammonium ion concentration, and temperature were investigated. Adsorption kinetics showed that the adsorption behavior followed the pseudo second-order kinetic model. The equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption models and the model parameters were evaluated. The monolayer adsorption capacity of the adsorbent, as obtained from the Langmuir isotherm, was 22.61 mg NH₄⁺-N/g at 283 K. Thermodynamic analyses showed that the adsorption was spontaneous and that it was also a physisorption process. Our data revealed that the higher NH₄⁺ adsorption capacity could be primarily attributed to the water absorption process and electrostatic interaction. Particularly, the high surface hydroxyl-content of NRB enables strong interactions with ammonium ion. The results obtained in this study illustrate that the NRB is expected to be an effective and economically viable adsorbent for ammonium ion removal from aqueous system.

© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Introduction

Ammonium ion (NH₄⁺) is the primary nitrogen polluting species in the hydrosphere. Ammonium ion discharged together with municipal, agricultural or industrial effluents is responsible for harmful effects such as eutrophication of lakes and rivers, decreased dissolved oxygen, toxicity to aquatic life, and increased corrosion rate of soil materials (Karadag et al., 2006; Yusof et al., 2010). Eutrophication of water bodies, a problem of global concern, has been identified as a major environmental problem for water resource management (Du et al., 2005; Zheng et al., 2008). In water supply plants, the ammonium ion present in raw water will react with chlorine to form disinfection byproducts, which could damage the human nervous system and cause deterioration of the taste and odor of water. Hence, it is necessary either to control the ammonium ion contamination in raw water or to remove it before the water is disinfected with chlorine (Cai et al., 2015; Han et al., 2013). Controlling the ammonium ion in the raw water is the preferred solution.

A number of methods (e.g., ion-exchange, adsorption) have been developed to remove ammonium ion (Leaković et al., 2000; Liu et al., 2015; Mandowara and Bhattacharya, 2011; McVeigh and Weatherley, 1999; Wang et al., 2014). Among these strategies, adsorption is considered to be promising due to its high-efficiency, cost effectiveness and easy implementation (Zhu et al., 2012). As a result, many natural and synthetic materials have been developed and used as adsorbents for ammonium ion removal. However, these adsorbents were always found to have slow adsorption kinetics, and their adsorption capacities may be limited (Alshameri et al., 2014;
Kučić et al., 2012; Moradi, 2011; Nielsen, 1996; Rožič et al., 2000). In addition, increased awareness and understanding of the deleterious effects of ammonium ion released from wastewater treatment facilities into natural water systems has resulted in stringent laws restricting ammonium ion discharge. Therefore, the development of new adsorbents designed specifically for the rapid removal of ammonium ion from water is necessary.

Manganese oxides (MnOₓ) with layered topologies are ubiquitous in the natural environment. Birnessite belongs to the family of layered hydrous manganese oxides. It possesses unique surface charge, cation exchange, and redox properties, which make it highly reactive with respect to sorption phenomena. Furthermore, birnessite can be synthesized easily under laboratory conditions and, consequently, has often been applied to remove heavy metals (e.g., copper, cadmium, lead and zinc) from water (Eren, 2009; Gadde and Laitinen, 1974; Han et al., 2006a, 2006b; Lefkowitz and Elzinga, 2015; Wang et al., 2007; Kanungo et al., 2004; McKenzie, 1980; Villalobos et al., 2005).

To the best of our knowledge, studies on the adsorption of ammonium ion by manganese oxide in water solution have been limited. Birnessite is the predominant naturally occurring manganese oxide in most environmental settings (Zhu et al., 2010). Thus, in this study, we examined the adsorption of ammonium ion from water by a birnessite-type manganese oxide. The adsorption kinetics and equilibrium isotherms of the uptake of ammonium ion on manganese oxide were studied. Additionally, the effects of initial ammonium ion concentration, contact time, pH, and the major ions present in groundwater on the adsorption process were investigated. The structural characterization of the adsorbents was used to preliminarily reveal the underlying sorption mechanism.

1. Materials and methods

1.1. Materials

Manganese chloride (MnCl₂·4H₂O), potassium permanganate (KMnO₄), sodium hydroxide (NaOH), ammonium chloride (NH₄Cl), calcium chloride (CaCl₂), and magnesium chloride (MgCl₂) were of analytical reagent grade. All solutions were prepared with deionized distilled water. NH₄⁺-N solutions of different concentrations were prepared by dissolving the required amounts of NH₄Cl in deionized distilled water.

1.2. Preparation of adsorbent

Birnessite-type manganese oxides with interlayer K⁺ and Na⁺ ions have been synthesized by redox reactions between KMnO₄ and MnCl₂ under alkaline conditions. In this study, the absorbent sample was prepared based on the method reported by Luo and Suib (1997). Specifically, 160 mL of 0.5 mol/L MnCl₂·4H₂O was added into 180 mL of 5.55 mol/L NaOH under constant stirring. After 2 hr of cooling, 160 mL of 0.2 mol/L KMnO₄ was added dropwise under constant stirring. The manganese oxide formed was allowed to settle and the supernatant was replaced with water several times until no more manganese ion was detected in the washing water. The resultant sample was freeze-dried, ground, and sieved through a 100 mesh sieve before being used.

Birnessite is a layered Mn oxide consisting of stacked sheets of edge-sharing MnO₆ octahedra with water molecules in the interlayer space (Elzinga, 2011; Drits et al., 1998; Nakayama et al., 2008). Furthermore, due to the Mn site vacancies and substitution of Mn(III) for Mn(IV), the manganese oxide layer is always negatively charged (Elzinga, 2011), and thus in order to counterbalance the charge defects in MnO₆ sheets, cations (e.g., Na⁺) will also be intercalated in the interlayer region.

1.3. Characterization of adsorbent

The manganese oxide sample solids were characterized by attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen porosimetry to determine MnOₓ mineralogy. Samples were randomly selected for characterization. To resolve the bands of functional groups and determine their frequency, spectral analysis was done for MnOₓ sample solids before and after NH₄⁺ adsorption using an FT-IR spectrometer (Thermo-Nicolet IS50) in the range of 500–4000 cm⁻¹. The structures of the samples were examined by XRD at room temperature using a Rigaku Ultimam IV diffractometer with Cu Kα radiation (λ = 1.5606 Å) operated at 40 kV and 40 mA, with data collected in the range of 5 to 80° at a scan rate of 5°/min and a step size of 0.02°. Phases were identified using JCPDS files. The surface and pore properties of the adsorbent were studied using nitrogen adsorption experiments using an Autosorb-1 (Quantachrome Instruments) at 77 K. The specific surface area of the adsorbent was calculated using the Brunauer–Emmett–Teller (BET) method. SEM images were taken on a Hitachi S-3400 N scanning electron microscope. The voltage used was 5 kV for the SEM studies. Zeta potential was conducted by a Malvern Instruments Zetasizer Nano ZS 90.

1.4. Batch adsorption experiments

Two different types of sorption experiments were performed: kinetics experiments, with reaction times ranging from 0 to 300 min, and isotherm experiments at 283, 293, 303 and 313 K to establish the maximum ammonium ion sorption after 30 min of equilibration, where the concentrations of NH₄⁺-N ranged from 2 to 50 mg/L. For both types of experiments, portions of the adsorbent samples were accurately weighed into 250-mL glass conical flasks to yield a final solid concentration of 0.5 g/L. The final volumes were adjusted to 100 mL with deionized distilled water after appropriate volumes of ammonium ion stock solution were added to yield the pre-selected NH₄⁺-N concentrations. The initial concentrations of NH₄⁺-N in the kinetics experiments were 2–25 mg/L. The suspensions were shaken at 150 r/min on a water bath shaker at 298 K.

To explain the adsorption behavior of manganese oxide, the effect of pH on the NH₄⁺ adsorption capacity of manganese oxide was evaluated. The pH values were adjusted using dilute NaOH or HCl. The initial concentrations of NH₄⁺-N and manganese oxide used in these experiments were 10 mg/L and 0.5 g/L, respectively. To study the effect of cations (Na⁺, Ca²⁺ and Mg²⁺) on the adsorption capacity, the initial NH₄⁺-N concentration of 15 mg/L and individual cation concentrations in the range of 0–75 mg/L were used.
Samples for ammonium ion analysis were obtained by filtration of the suspension through 0.45 μm polyethersulfone syringe filters. The filtrates obtained were examined by the conventional Nesslerization method to determine the NH$_4^+$ concentration in solution. The calibration curve was plotted with absorbance as a function of NH$_4^+$ concentration in solution. The amount of adsorbed NH$_4^+$ at time t, q_t (mg/g), was calculated using the following Eq. (1):

$$q_t = \left(\frac{C_0 - C_t}{m} \right) \times V$$

where, C_0 (mg/L) is initial concentration of NH$_4^+$, C_t (mg/L) is the concentration of NH$_4^+$ at time t, V (L) is volume of solution used, and m (g) is the mass of adsorbent sample. Each experiment was performed in triplicate and standard deviations were calculated. Data points in all figures without error bars represented the mean values of triplicate experimental results.

2. Results and discussion

2.1. Phase structure of adsorbent

XRD was used to identify the phases and crystallinity of the synthesized manganese oxide samples (Iyer et al., 2012). The diffractogram obtained for manganese oxide is shown in Fig. 1. The XRD pattern of our sample is almost identical to that reported by Drits et al. (1997). The narrow characteristic peaks in the XRD pattern of the sample indicate high crystallinity. The prepared manganese oxide was composed primarily of Na-rich birnessite (NRB), as indicated by two peaks at 001 and 3.572 [02] Å in its XRD pattern (XRD/CPDS file 43-1456), which are characteristic for this mineral phase. The sample shows characteristic [200], [110], [310] and [020] peaks of birnessite, which confirms that it has the one-layer monoclinic structure.

2.2. Kinetics of ammonium ion adsorption on NRB

Adsorption kinetic studies were thoroughly explored at 298 K with initial pH 5.8, since they can provide important information on the adsorption rate and mechanism. Fig. 2a shows that the higher the initial NH$_4^+$ concentration, the greater the adsorption capacity. According to several studies, the initial concentration could provide the driving force to overcome the mass transfer resistance of NH$_4^+$ between the aqueous and solid phases (Malkoc and Nuhoglu, 2005). An increase in the initial NH$_4^+$ concentration increased the mass transfer driving force of the NH$_4^+$ between the aqueous solution and adsorbent phase, which led to an increase in NH$_4^+$ uptake (Aksu, 2002; Mashitah et al., 2008). The adsorption process nearly reached equilibrium within the first few minutes, which suggested a fast adsorption process. After that, no remarkable concentration changes occurred. It is assumed here that the adsorption takes place primarily at easily accessible surface sites, requiring no diffusion into micro-pores, and the rapid adsorption rate may be attributed to a hydrophobic interaction between the adsorbent and NH$_4^+$ (Mashitah et al., 2008; Qin et al., 2007).

Kinetic modeling not only allows estimation of adsorption rates but also enables the determination of suitable rate expressions, characteristic of possible reaction mechanisms. In this respect, the pseudo first-order kinetic model, the pseudo second-order kinetic model and the intra-particle model were used to test the experimental data at the concentration of 10 mg/L NH$_4^+$:

The pseudo first-order model is represented as:

$$\ln q_e - q_t = \ln q_e - k_1 t$$

The pseudo second-order model is represented as:

$$\frac{t}{q_t} = \frac{1}{k_2 q^2_e} + \frac{1}{q_e} t$$

The intra-particle diffusion model is represented by:

$$q_t = k_3 t^{1/2} + C$$

where, q_e (mg/g) and q_t (mg/g) represent the amounts of NH$_4^+$ ion adsorbed at equilibrium and time t (min), respectively. k_1 (min$^{-1}$) is the rate constant of the pseudo first-order model. k_2 (g/(mg·min)) is the pseudo second-order rate constant. k_3 (mg/(min$^{1/2}$·g)) is the intra-particle diffusion rate constant and C is the intercept.

The results from fitting experimental data with pseudo first-order, pseudo second-order and intra-particle diffusion models are presented in Table 1. According to the correlation coefficient values, it can be easily determined that the pseudo second-order kinetic model fitted the NH$_4^+$ adsorption best. The plots of the pseudo second-order kinetic parameters for different NH$_4^+$ concentrations are shown in Fig. 2b.

2.3. Adsorption isotherm

In order to optimize the design of an adsorption system, analysis of the adsorption equilibrium data is important. In order to describe the adsorption isotherm, two important isotherms models were selected in this study, i.e., the Langmuir and Freundlich isotherms.

The Langmuir isotherm assumes that the adsorption occurs at specific homogeneous sites on the adsorbent, and is the most commonly used model for monolayer adsorption process, as represented by the following equation (Zheng et al., 2009):

$$q_e = \frac{q_m b C_e}{1 + b C_e}$$

![Fig. 1 – X-ray diffractogram of the manganese oxide sample.](image-url)
where, \(q_e \) (mg/g) is the equilibrium adsorption capacity of NH\(_4^+\)-N on adsorbent, \(C_e \) (mg/L) is the concentration of NH\(_4^+\)-N at equilibrium, \(q_m \) (mg/g) is the monolayer adsorption capacity of the adsorbent and \(b \) (L/mg) is the Langmuir adsorption constant. These parameters can be determined by non-linear regression of the experimental data.

The Freundlich isotherm equation, the most important multilayer adsorption isotherm for heterogeneous surfaces, is described by the following equation (Öztürk and Bektaş, 2004):

\[
\log q_e = \log K_f + \frac{1}{n} \log C_e
\]

(6)

where, \(K_f \) (mg/g)(L/mg)\(^n\) and \(n \) are Freundlich adsorption isotherm constants, affecting the adsorption capacity and intensity of adsorption.

Fig. 3 shows the Langmuir and Freundlich plots for the NH\(_4^+\) adsorption at different temperatures. It was clear that adsorption isotherms at different temperatures could be fitted well using the two isotherm models. The isotherm parameters obtained from the fitting curves to the Langmuir and Freundlich models are given in Table 2. However, the Langmuir model was more suitable than the Freundlich model to describe the adsorption isotherm, as reflected by the correlation coefficients \(R^2 \). The results suggested that the adsorbent was homogeneous, and the adsorption film had monolayer coverage. On the other hand, the maximum monolayer adsorption capacity, \(Q_m \), defined as the total capacity of manganese oxide for NH\(_4^+\) adsorption, decreases with increasing temperature, which indicates that a decrease in temperature is favorable for NH\(_4^+\) adsorption. Its maximum value was determined to be 22.61 mg/g at 283 K.

The thermodynamic parameters of the adsorption process, including the changes in the standard free energy (\(\Delta G^0 \)), enthalpy (\(\Delta H^0 \)) and entropy (\(\Delta S^0 \)), were estimated using Eqs. (7) and (8), respectively. The calculated values of the thermodynamic parameters are tabulated in Table 3.

\[
\Delta G^0 = -RT \ln K_l
\]

(7)

\[
\ln K_l = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT}
\]

(8)

where, \(R \) (J/(mol·K)) is the universal gas law constant; \(T \) (K) is the absolute temperature of solution and \(K_l \) (L/mol) is the Langmuir constant.

It is noted that the \(\Delta G^0 \) values are all negative, which indicates that adsorption of NH\(_4^+\) onto manganese oxide is feasible and spontaneous. As expected, it was found that the negative values of \(\Delta G^0 \) increased with increasing temperature from 283 to 313 K, which indicated that adsorption became more spontaneous. It should be specified that the calculated \(\Delta G^0 \) value at 313 K (−18.91 kJ/mol) was very close to that of 303 K (−19.05 kJ/mol), which may imply that the temperature effects over the test range (303–313 K) became less significant. The \(\Delta H^0 \) value is negative for adsorption, indicating that the overall process is exothermic. The positive values of \(\Delta S^0 \) suggest that the randomness at the solid/solution interface increases with the adsorption process.

2.4. Effect of pH on ammonium ion adsorption

The adsorption of NH\(_4^+\) onto NRB was studied as a function of pH, as shown in Fig. 4a. The results indicated that adsorption

Table 1 – Kinetic models for ammonium ion adsorption on Na-rich birnessite (NRB) at 298 K.

<table>
<thead>
<tr>
<th>Models</th>
<th>Parameters</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo first-order</td>
<td>(Q_{c,ex} = 1.709) mg/g</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>(k_1 = 0.0423) min(^{-1})</td>
<td>0.99</td>
</tr>
<tr>
<td>Pseudo second-order</td>
<td>(Q_{c,ex} = 8.252) mg/g</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>(k_2 = 0.6298) g/(min·mg)</td>
<td></td>
</tr>
<tr>
<td>Intra-particle diffusion</td>
<td>(Q_{c,ex} = 6.790) mg/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(k_3 = 0.3401) mg/(min(^{1/2})·g)</td>
<td></td>
</tr>
</tbody>
</table>
capacity of NH₄⁺ increased with increasing pH from 2.0 to 5.0, while remaining approximately constant in the pH range of 5.0 to 7.0, then decreased at pH 8.0.

The reason for the poor removal of NH₄⁺ at lower pH was that the negative charge on the surface declined due to the excess protons in the solution. This could be demonstrated by the zeta potentials (Fig. 4b). The H⁺ ion concentration also increased with the decrease of pH, which intensified its competition for adsorption sites (Huang et al., 2010). The surface charge as assessed by point of zero charge is approximately 2.0, which is consistent with other research results (Kanungo and Parida, 1984; Taffarel and Rubio, 2010). The zeta potential of manganese oxide decreased with the increase of pH, indicating a more negative charge on the manganese oxide surface. The negatively charged surfaces of the manganese oxide can provide the driving force for electrostatic interaction with NH₄⁺. This further validates the results obtained in the FT–IR analysis.

After the pH increases to 8.0, the removal efficiency drops dramatically. This behavior can be explained by the fact that NH₄⁺ could be converted into NH₃ species at pH values above 8.0 (Du et al., 2005).

Additionally, the equilibrium pH values were shown to increase with an increase in the initial pH from 2.0 to 7.0, and slightly decreased with an additional increase from pH 7.0 to pH 12.0 for all the cases (Fig. 4a); similar results have been reported previously (Wang et al., 2014; Zheng and Wang, 2009).

2.5. Adsorption mechanism

SEM micrographs (Fig. 5) illustrated the surface morphology of the manganese oxide sample before adsorption. It was apparent that the sample was porous and non-homogeneous. These observations help explain why the adsorbent exhibited an extremely fast rate of adsorption.

FT–IR spectroscopy was used as a direct way of investigating the mechanisms of NH₄⁺ adsorption on NRB. The FT–IR spectra of NRB samples collected before and after the adsorption of the NH₄⁺ from aqueous solution were studied, as shown in Fig. 6. It was reported that the N–H deformation vibration of NH₄Cl occurs at 1415 cm⁻¹ (Wang et al., 2014). The main absorption peaks of the NRB can still be observed on the spectra after adsorption. The stretching vibration of hydroxyl ions in specific crystallographic sites was shifted from 3365.5 to 3165.4 cm⁻¹, and the stretching vibration of less-ordered H₂O molecules was shifted from 1644 to 1633 cm⁻¹ (Daud and Hameed, 2010; Naidja et al., 2002; Wang et al., 2015). The characteristic adsorption peak of NH₄Cl appeared in the spectra of NRB after adsorption. This information implies that after the adsorption, the surrounding environment of hydroxyl ions and less-ordered H₂O molecules had changed. The results obtained from FT–IR analysis showed that the higher adsorption capacity of NH₄⁺ could be mainly attributed to the water absorption process and the electrostatic interaction between NH₄⁺ in aqueous solution and –OH groups on NRB. The fast adsorption process nearly reached equilibrium within the first few minutes, which implied a strong electrostatic interaction between the negatively charged surface of manganese oxide and the cationic NH₄⁺.

Table 2 – Parameters of adsorption isotherm of NH₄⁺ ion onto manganese oxide at different temperatures.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>Q₀(mg/g)</th>
<th>Kᵢ(L/mg)</th>
<th>R²</th>
<th>Kᵢ˳((mg/g) (L/mg)¹/₂)</th>
<th>1/n</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>283</td>
<td>22.61</td>
<td>0.147</td>
<td>0.982</td>
<td>3.169</td>
<td>0.505</td>
<td>0.904</td>
</tr>
<tr>
<td>293</td>
<td>20.94</td>
<td>0.142</td>
<td>0.992</td>
<td>3.374</td>
<td>0.469</td>
<td>0.961</td>
</tr>
<tr>
<td>303</td>
<td>18.65</td>
<td>0.137</td>
<td>0.980</td>
<td>3.570</td>
<td>0.424</td>
<td>0.970</td>
</tr>
<tr>
<td>313</td>
<td>17.5</td>
<td>0.102</td>
<td>0.991</td>
<td>4.261</td>
<td>0.381</td>
<td>0.985</td>
</tr>
</tbody>
</table>

Table 3 – Thermodynamic parameters for NH₄⁺ adsorption onto manganese oxide.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>ΔG° (kJ/mol)</th>
<th>ΔH° (kJ/mol)</th>
<th>ΔS° (l/k mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>283</td>
<td>−17.95</td>
<td>−8.12</td>
<td>35.19</td>
</tr>
<tr>
<td>293</td>
<td>−18.50</td>
<td>−8.12</td>
<td>35.19</td>
</tr>
<tr>
<td>303</td>
<td>−19.05</td>
<td>−8.12</td>
<td>35.19</td>
</tr>
<tr>
<td>313</td>
<td>−18.91</td>
<td>−8.12</td>
<td>35.19</td>
</tr>
</tbody>
</table>
It has been reported that the specific surface area is an important factor for determining the adsorption capability of an adsorbent (Auta and Hameed, 2012; Li et al., 2013). The surface area of NRB, as calculated by the standard BET method, is 37 m²/g. The external surface area and maximum adsorption capacity of NRB and some commonly used adsorbents are listed in Table 4. These are all important and practical adsorbents due to their low-cost, availability and easy application in the removal of ammonium contaminants from the environment. Although the specific surface area is considered to be an important factor for adsorption processes, it can be observed in the table that the maximum adsorption capacity is not positively related to the external surface area. Moreover, it should be noted that the specific surface area of most adsorbents listed in Table 4 is not very high. This phenomenon indicated that the maximum adsorption capacity of an adsorbent for the NH₄⁺ ion is not solely dependent on its specific surface area, and many other factors such as surface morphology and surface charge may also influence the adsorption process. Specifically, the porous and non-homogeneous nature of NRB (as demonstrated in Fig. 5) could also benefit the contact between NRB and the NH₄⁺ and thus make the absorption of NH₄⁺ more efficient.

On the other hand, the negatively charged surface of manganese oxides, as confirmed by zeta potential, was also favorable for adsorption of positively charged NH₄⁺. The point of zero charge (pHₚzc) of the manganese oxide is 2–3. Consequently, the manganese oxides are negatively charged at near-neutral pH values. Therefore, because of their specific surface properties, there is an attractive force between NH₄⁺ and manganese oxide. NH₄⁺ was strongly adsorbed onto the manganese oxide surface. The birnessite group minerals possess low pHₚzc, which endows them with significant surface reactivity (Matocha et al., 2001). The electrostatic attraction can be further verified by performing the adsorption experiment in a mixed solution containing positively charged NH₄⁺ and Ca²⁺, Mg²⁺ and Na⁺ cations. It was found that the cations (Ca²⁺, Mg²⁺ and Na⁺) significantly reduce the adsorption of NH₄⁺ on manganese oxides. The experimental results obtained for NH₄⁺ removal by NRB in the presence of individual cation are shown in Fig. 7. The removal efficiency of the NH₄⁺ ion decreased with an increase in the concentration of cations. To further investigate, zeta potential measurements were performed. Without cations the Zeta potential of NRB was −25.0 mV, while in the presence of Ca²⁺, Na⁺ and Mg²⁺, the Zeta potential of NRB decreased to −15.6 mV, −19.5 mV, and −11.5 mV, respectively.

Fig. 4 – Effect of solution pH on the adsorption of NH₄⁺ ion onto manganese oxide (a) (initial NH₄⁺-N concentration = 10 mg/L, adsorbent dosage = 0.5 g/L, temperature = 298 K); Zeta potential of manganese oxide as a function of pH (b).

Fig. 5 – Scanning electron microscopy images of the NRB sample at (a) 5000×; (b) 10,000× resolutions.
This effect may be attributed to the preferential absorption of cations and the weakened electronegativity on the NRB surface. It may also be attributed to the competitive adsorption between the cations and NH$_4^+$.

From the above analysis, it is evident that electrostatic interaction was the main mechanism for the NH$_4^+$ adsorption. The adsorption process can be described by the following reaction:

$$\text{NH}_4^+ + \text{NRB}^- \rightarrow \text{NH}_4^+ \cdot \text{NRB}^- \quad (9)$$

where, NH_4^+ represents the NH$_4^+$ and NRB$^-$ represents a negative site. These aspects mentioned above synergistically contribute to the high adsorption capacity and removal efficiency for NH$_4^+$.

3. Conclusions

Na-rich birnessite (NRB) has been successfully synthesized by a simple synthesis method. The adsorption ability of NRB was evaluated by choosing the NH$_4^+$ as a model contaminant. Batch adsorption tests demonstrated that the adsorption is affected by various conditions, such as contact time, solution pH, initial NH$_4^+$ concentration, and the presence of cations (Ca$^{2+}$, Mg$^{2+}$, and Na$^+$. Kinetics data showed that NRB was highly effective for NH$_4^+$ removal and that the adsorption rate was very high, especially at early stages of the adsorption. Equilibrium data was fitted by the Langmuir and Freundlich isotherms, and was better described by the Langmuir isotherm model, with a maximum monolayer adsorption capacity of 22.61 mg/g. The maximum removal for NH$_4^+$ was observed at pH 5–7 for NRB. The electrostatic attraction between NRB and NH$_4^+$ accounts for the high adsorption performance of the NRB. The structure and surface properties of NRB are the key factors affecting its adsorption capacity for NH$_4^+$. Consequently, these oxides have potential for application in the environmental remediation of NH$_4^+$.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 51278409) and the Education Department of Shaanxi Province (No.15JS046).

Table 4 - A summary of external surface area and maximum adsorption capacity of some commonly used adsorbents for ammonium ion removal.

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Surface area (m2/g)</th>
<th>Q_{max} (mg/g)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural zeolite</td>
<td>2 ± 1</td>
<td>0.38</td>
<td>(Demir et al., 2002)</td>
</tr>
<tr>
<td>Yemeni natural zeolite</td>
<td>36</td>
<td>11.0</td>
<td>(Alshamery et al., 2014)</td>
</tr>
<tr>
<td>Zeolite clinoptilolite</td>
<td>26</td>
<td>12.29</td>
<td>(Vassileva and Voikova, 2009)</td>
</tr>
<tr>
<td>Zeolite synthesized from fly ash</td>
<td>27</td>
<td>24.3</td>
<td>(Zhang et al., 2011a)</td>
</tr>
<tr>
<td>Low-calcium fly ashes</td>
<td>27</td>
<td>23.8</td>
<td>(Zhang et al., 2011b)</td>
</tr>
<tr>
<td>Low-cost Romanian volcanic tuff</td>
<td>52</td>
<td>19.0</td>
<td>(Maranon et al., 2006)</td>
</tr>
<tr>
<td>limestone and rice husk carbon</td>
<td>61</td>
<td>32.89</td>
<td>(Halim et al., 2010)</td>
</tr>
<tr>
<td>Sepiolite</td>
<td>263</td>
<td>49</td>
<td>(Balci and Dinçel, 2002)</td>
</tr>
<tr>
<td>NRB</td>
<td>37</td>
<td>22.61</td>
<td>This paper</td>
</tr>
</tbody>
</table>

NRB: Na-rich birnessite.
REFERENCES

