Pd-MnO₂ nanoparticles/TiO₂ nanotube arrays (NTAs) photo-electrodes photo-catalytic properties and their ability of degrading Rhodamine B under visible light

Mohamed Thabit¹, Huiling Liu^{1,⁎}, Jian Zhang², Bing Wang¹

1. State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
2. School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China

ARTICLE INFO

Article history:
Received 20 March 2017
Revised 6 June 2017
Accepted 26 June 2017
Available online 7 September 2017

Keywords:
Pd-MnO₂/TiO₂
Nanotubes
Photo electrode
Photo degradation
Rhodamine B
Photo-catalytic efficiency

ABSTRACT

Pd-MnO₂/TiO₂ nanotube arrays (NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO₂/TiO₂ NTAs photo-electrodes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet-visible diffuse reflectance spectrum (DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination (xenon light). The performed analyses illustrated that Pd-MnO₂ codoped particles were successfully deposited onto the surface of the TiO₂ nanotube arrays; DRS results showed significant improvement in visible light absorption which was between 400 and 700 nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant (Rhodamine B) illustrated a superior photocatalytic (PC) efficiency of approximately 95% compared to the bare TiO₂ NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of OH radicals.

© 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

INTRODUCTION

Since the beginning of this century the world suffered from a rapid increase of multiple types of environmental pollutants due to the increase of industrial hazardous materials emitted, poured, dumped or leaked into the ecosystem (Chen et al., 2013a; Cheng et al., 2013a; Yao et al., 2012) thus, with the onset of the environmental crisis, several researches were conducted to improve the technologies of pollutants' termination (Sun et al., 2013; Wei et al., 2013; Yu et al., 2014). One of those technologies which has shown great potential is the use of the photo catalytic properties of TiO₂ nanotube arrays (NTAs) to treat or terminate pollutants in wastewater and as a solar reactor application. It has been a remarkable candidate due to the low cost, non-toxicity and chemical stability of TiO₂, whilst its nanotube structure exhibits exceptional charge transport and excellent light harvesting properties. Therefore many efforts have been made to enhance its photo catalytic properties, which improves its application efficiency (Zhong et al., 2009; Momeni et al., 2015a; Momeni, 2015). However, TiO₂ can only be excited by ultraviolet light, which makes up only 3%–5% of the solar spectrum (Cheng et al., 2015; Chen et al., 2013b; Momeni and

⁎ Corresponding author. E-mail: liuhl@hit.edu.cn (Huiling Liu).
Ghayeb, 2015), therefore the use of narrower semiconductors has proven to be an effective technique, with high potential, to improve the visible light, photo catalytic performance of TiO\textsubscript{2}. This is due to its ability to absorb more photons emitted from the light source. Moreover it has the ability to induce a higher photocatalytic (PC) efficiency due to the higher mobility and separation of the photo generation charge carrier (Momeni et al., 2015c, 2016a, 2016b; Cheng et al., 2013c). However, it was still required for there to be a number of semi-conductors, such as Pd, Ru, Cd, etc. (Momeni et al., 2015b; Momeni and Ghayeb, 2016a, 2016b), to enhance the catalytic performance of the Titanium dioxide nanotube arrays. These electrochemical capacitors with their high power density (Momeni et al., 2015c, 2016c; Momeni and Ghayeb, 2016c), long cycling life time, MnO\textsubscript{2} are a promising pseudocapacitive material with high theoretical specific capacitance. A study has shown that MnO\textsubscript{2} can improve the absorption of visible illumination (Hu et al., 2016; Seong et al., 2015c, 2016a, 2016b; Cheng et al., 2013c) and facilitate the electron–hole pairs to separate, because of their low charge transfer resistance and multitudinous defects (Zhou et al., 2016). MnO\textsubscript{2} as a non-noble composite semiconductor catalyst: several studies on MnO\textsubscript{2} itself, as a catalyst, have shown results that were promising enough though they are not as significant as for noble catalysts (Sklar et al., 2005; Tian et al., 2012; Al-Sammarraie, 2014).

Literatures illustrated that manganese based catalysts are the most promising alternatives to metallic catalysts, due to their wide compounds variety. Among these compounds MnO\textsubscript{2}, Mn\textsubscript{3}O\textsubscript{4}, Mn\textsubscript{5}O\textsubscript{8} exhibited high activity. However, mixed oxides were found to be more active than pure MnO\textsubscript{2} due to the presence of metal ions with different charges on the catalyst surface (Cheng et al., 2013b, 2013c). Several studies on MnO\textsubscript{2} itself as catalyst have been performed, they reported remarkable capability of decomposing pollutants such as Acid Orange II under visible light (Sorge et al., 2015; Yang et al., 2014). However, it has been found that MnO\textsubscript{2} suffers from rapid capacity fade during cycling process, thus, some methods have been used to solve the problem such as developing nanostructured and nanotubes materials (Zhu et al., 2015; Wang et al., 2015) additionally, they have found that codoping MnO\textsubscript{2} with another nanomaterials improves structural and thermal stability (Seong et al., 2015). And the fabricated photoelectrodes become highly active for low temperature (Ettireddy et al., 2007; Jo and Lee, 2015).

Manganese dioxide (MnO\textsubscript{2}) is not easily dissolved when bonding with other nanomaterials, thus, it does not pollute the aqueous medium during the administration of photocatalytic degradation processes (Okada et al., 2012).

Therefore, codoping MnO\textsubscript{2} with a noble semiconductor such Pd is a promising strategy as many researches have illustrated that the presence of a noble metal–semiconductor interface may induce effective charge separation to favor the subsequent photocatalysis (Momeni and Nazari, 2016).

There have been several studies of the synthesis of suitable semi-conductors on TiO\textsubscript{2} NTAs that have pursued this line of investigation. Following in the footsteps of these researches, we have sought to show in this study how Pd–MnO\textsubscript{2}/TiO\textsubscript{2} NTAs photoelectrodes have been fabricated successfully via anodization, followed by electrodeposition technique. The fabricated electrodes were tested and analyzed as shown in the following record of the experiment.

1. Materials and methods

1.1. Experimental materials and reagents

All chemicals used in this study are analytical grade and were employed without purification. Titanium sheets were purchased from Baoji and Baoye Titanium–Nickel Manufacturing Co., Ltd. Ammonium fluoride (NH\textsubscript{4}F), ethylene glycol, acetone, absolute ethanol, and Rhodamine B were purchased from DINGSHENGXIN, China. Power supply (LPS305C-TC, BK PRECISION, USA) 0 to 30 V electric potential and 0 to 5 A electric current, magnetic agitators, 35 W xenon light source (D2S, Phillips, China), and 50 cm × 60 cm × 40 cm light isolation metal box were applied in this study.

1.2. Photo-electrode preparation

1.2.1. Titanium plate pretreatment

The size of the strip titanium sheet is 90 mm × 10 mm × 0.5 mm. The effective work area is 40 mm × 10 mm × 0.5 mm, the titanium foils were cleaned via immersion in a mixture of acetone and absolute ethanol and then in an Ultrasonic water bath for 30 min, the foils were left to dry for 1 hr at 80°C in vacuum oven, after being completely dried, the foils were immersed in a mixture of [HF: HNO\textsubscript{3}: H\textsubscript{2}O = 1:4:5 in volume] for 30 sec followed by a rinsing with deionized (DI) water then drying them in a vacuum oven for 4 hr at 70°C.

The polished titanium foils were anodized at a constant potential of 20 V in a mixture of water: ethylene glycol 1:9 containing 0.5 wt.% NH\textsubscript{4}F aqueous solution at room temperature for 2 hr in a two-electrode configuration with a platinum cathode. After anodic oxidation, the samples were rinsed with deionized water and dried in air, the resulting amorphous TiO\textsubscript{2} NTs were annealed at 500°C for 2 hr with heating and cooling rates of 2°C/min in air to crystallize the tubes.

1.2.2. Preparation of Pd–MnO\textsubscript{2}/TiO\textsubscript{2} NTAs photo-electrode

The electrolyte was an aqueous solution of 0.5 mol/L Mn(CH\textsubscript{3}COO)\textsubscript{2} for preparation of MnO\textsubscript{2} deposition. Electrodeposition was carried out at room temperature, using a three-electrode potentiostatic control and direct current (DC) electrodeposition system with a saturated calomel electrode as reference electrode, a 1.0 cm × 1.0 cm platinum plate as a counter electrode and TiO\textsubscript{2} NTs substrate as working electrode. The electrolysis was carried out at 1.0 V for 2 hr. The foils were rinsed with DI water then annealed at 350°C for 2 hr. Afterwards the Pd nano-particles were electrodeposited onto the prepared MnO\textsubscript{2}/TiO\textsubscript{2} electrode through the constant potentials in a three-cell configuration with MnO\textsubscript{2}/NTAs electrode as cathode, platinum sheet as anode and SCE as reference electrode, which had been conducted at a constant potential of ~0.8 V in PdCl\textsubscript{2} solution (1 mmol/L) that contained 0.5 mol/L NaCl which served as the electrolyte. At the end the prepared photoelectrodes (Pd–MnO\textsubscript{2}/TiO\textsubscript{2} NTAs) were rinsed by DI water, followed by drying at 70°C for 4 hr in a vacuum oven.

1.3. Photo-electrode characterization

In order to determine the characterization of the photoelectrode surface, several tests was performed such as scanning electron
microscopy (SEM) (QUANTA200F, Thermo Fisher Scientific, USA) to observe the distribution and dispersion of nano-particle on the electrode surface. X-ray diffraction (XRD) test (D/Max IIIIB, Rigaku, Japan) was performed to detect the crystalline structure, grain size and the elementary composition. Reflectance spectroscopy (UV-Vis DRS) was recorded on a spectrophotometer (TU-1901, Xian Yima Optoelec Co., Ltd., China) equipped with an integrating sphere, in which BaSO4 was used as the reflectance sample.

1.4. Evaluation of and photo catalysis (PC)

Photo catalytic activities of the samples were evaluated by using Rhodamine B as a model organic dye pollutant compound, the foils were immersed in a cylindrical quartz photo reactor containing 50 mL of Rhodamine B (5 mg/L), the TiO2 NTAs electrode was placed vertically in the reactor then aged with magnetic agitator, when the mixture reach the point of equilibrium the 35 W xenon light was switched on for 20, 40, 60, 80, 100 and 120 min, the sample were collected then measured at 552 nm according to the electronic transition from O2 2p to Ti3d) (Spadavecchia et al., 2010).

In order to investigate the light absorption ability of the as prepared TiO2 NTAs samples, UV-Vis diffuse reflectance spectra (DRS) analysis was performed on them. As shown in Fig. 4. Both bare TiO2 NTAs and Pd-MnO2/TiO2 samples exhibited a typical onset absorption edge at about 360 nm, corresponding to the electronic transition from O2− anti-bonding orbital to the lowest empty orbital of Ti4+ (O2p → Ti3d) (Spadavecchia et al., 2010).

Nevertheless, compared with bare TiO2 NTAs, the light absorbance edge of Pd-MnO2/TiO2 NTAs photoelectrode was significantly shifted to the visible region with the strongest peak located between 400 and 700 nm with a higher absorbance ratio, which could be attributed to the decoration of Pd-MnO2, which is responsible for the improvement of visible light capability of Pd-MnO2/TiO2 NTAs. Furthermore, the band gap of TiO2 NTAs could be calculated through the following Kubelka–Munk equation (Merabet et al., 2009)

\[(a h \nu) = A (h \nu - E_g)^{n/2} \]

where \(a \), \(h \nu \), and \(A \) are the absorption coefficient, light frequency, band gap, and constant, while \(h \nu \) is the photon energy and \(n \) is the semiconductor transition, respectively. Among them, \(n \) depends on the characteristics of the transition in a semiconductor, such as direct transition where \(n = 1 \) or indirect transition where \(n = 4 \). By estimating the band gap of TiO2 NTAs and Pd-MnO2/TiO2 NTAs they were found to be 3.2 and 2.36 eV.

2. Results and discussion

2.1. SEM analysis

An SEM test was performed on the as prepared bare TiO2 NTAs and the fabricated Pd-MnO2 photoelectrode. Images shown in Fig. 2a represent the tubular structure of the nanotubes which exhibit the average inner diameter of 120 nm and 20 nm of wall thickness, while Fig. 2b illustrates the deposition of the Pd-MnO2 particles onto the surface of the TiO2 NTAs, the SEM image of Pd-MnO2/TiO2 NTAs shows the spots of Pd particles along with the rings of the deposited MnO2 and can be easily observed to determine the existence of both Pd and MnO2 nano particles. Thus, to confirm the elements deposited onto the fabricated nanotube arrays, further analysis has to be performed.

2.2. XRD and DRS analysis

The investigation into the crystalline structure of the fabricated Pd-MnO2 was performed via the XRD analysis patterns of the as-prepared bare samples. Noticeable, all observed XRD peaks can be indexed to the standard diffraction data of the corresponding (JCPDS No. 05-0681), rutile (JCPDS No. 21-1272), anatase (JCPDS No. 21-1276) and the Ti metal phase (JCPDS No. 44-1294), the X-ray diffraction pattern of the bare TiO2 NTAs and Pd-MnO2/TiO2 NTAs composites film annealed at 350°C for 2 hr. The results shown in Fig.3 confirm the presence of the anatase phase of TiO2 in the samples at (101), and the Ti diffraction peaks at (101), (102) and (103) were due to the Ti substrate, however, the diffraction pattern of Pd-MnO2/TiO2 NTAs shows only the existence of traces of MnO2 appeared at diffraction peaks (310), (211) and (301) while the diffraction peaks of Pd are not seen, which is likely due to the existence of Pd in particle form or a low composition therefore another analysis would be required to determine the existence of Pd on the surface of the fabricated photoelectrode.

In order to clarify that the electrodeposited elements were successfully loaded onto the photoelectrode, XPS experiments were conducted to survey the surface concentrations of the atoms and to characterize the chemical species of the elements as shown in Fig. 5.

The manganese could be characterized via observing the Mn 2p peaks located between 640 and 660 eV, it has been demonstrated in the literature that the 2p3/2 binding energy of (MnO3) is 642.5 ± 1 eV, the results obtained from the performed analysis have shown the Mn 2p peak at 642.13 eV, as shown in Fig. 5b, which indicates the existence of MnO2 on the surface of the Photoelectrode.

![Diagram of equipment for photocatalytic oxidation.](image-url)
The O 1s peaks comprised of two surface oxygen species. The O1s XPS spectra exhibited a main peak at about 530.33 eV, which was assigned to lattice oxygen from the metal oxides. The peak at 531.5–532.5 eV corresponded to the chemisorbed oxygen over the surface of the catalysts. The Pd3d XPS is shown in Fig. 5d, the Pd3d spectrum consists of a high-energy peak (Pd3d3/2) at 340.93 eV and a low-energy peak (Pd3d5/2) at 335.73 eV. The spectrum can be deconvoluted into two doublets at 335.73 and 338.48 eV, corresponding to metallic Pd, which indicates that Pd was successfully loaded onto the surface of the Photoelectrode.

2.4. Photocatalytic performance

Photocatalytic activities of the samples were evaluated by using RhB as a model organic dye pollutant compound, the foils were immersed in a cylindrical quartz photo reactor containing 50 mL of RhB (5 mg/L), and Pd-MnO2/TiO2 NTAs electrode was placed vertically in the reactor then agitated with a magnetic agitator. When the mixture reached the point of equilibrium, the 35 W xenon light was switched on for 20, 40, 60, 80, 100 and 120 min, the samples were collected then measured at a 552 nm using UV–Vis spectrophotometer, the test was preformed inside an isolated metal box with the dimensions of 50 cm × 60 cm × 40 cm.

The photocurrent response is an effective method to evaluate the photocatalytic performance of the fabricated Pd-MnO2/TiO2 NTAs photoelectrodes. The transient photocurrent response (PCR) was conducted to access the separation efficiency of photogenerated holes and electrons (h+/e−) pairs, under illumination, the photocurrent response generated promptly and remarkably increased, while the photocurrent response went down to null once the irradiation of light on the photoelectrode was stopped, suggesting the fabricated Pd-MnO2/TiO2 NTAs photoelectrodes were no longer produced a current. The transient photocurrent density of Pd-MnO2/TiO2 NTAs was significantly higher than bare TiO2 NTAs, indicating a satisfactory separation efficiency of photogenerated charge carriers which is shown in Fig. 6.

Rhodamine B was often chosen as a representative pollutant to evaluate the photocatalytic performance of the as-synthesized catalysts. Thus, in this study, the degradation of RhB was used to evaluate the photocatalytic performances of the fabricated Pd-MnO2/TiO2 NTAs photoelectrodes. The degradation efficiencies (DE) of the collected samples were estimated via the following equation (Khataee et al., 2015)

\[
DE = \frac{C_0 - C_t}{C_0} \times 100
\]

where \(C_0\) is initial concentration and \(C_t\) is concentration at processing time \(t\). Compared with Pd/TiO2 and MnO2 efficiencies, the removal of direct photolysis or adsorption in the dark of RhB (<3%) was so low that it could be neglected. The photocatalytic performances of TiO2 NTAs were greatly improved by decoration with Pd-MnO2, which was supported by the DRS results, in addition, the results shown in Fig. 7 illustrated that codoping Pd-MnO2 photoelectrodes has superior photocatalytic performance over singly doped Pd/TiO2 and MnO2, while Pd/TiO2 showed higher performance than MnO2/ TiO2. This is due to the high catalytic properties of noble elements, among which Pd is found.

The codoped Pd-MnO2/TiO2 TNAs exhibited highest photocatalytic performance for the degradation of Rhodamine B compared with that of the others, for which 97.6% of RhB
could be degraded within 120 min irradiation, which was attributed to the following two aspects.

(1) External potential facilitated the charge transfer and mobility, leading to a higher separation efficiency of photogenerated charge carriers, thereby inducing a higher photocatalytic degradation efficiency. (2) TiO2 NTAs loaded with Pd-MnO2 significantly improved the visible light absorption capacity, which could induce more photons to participate in the photocatalytic reaction, resulting in a higher photocatalytic efficiency.

The degradation rate of RhB fitted well with the pseudo-first-order kinetics function as shown in Fig. 8 according to the Langmuir–Hinshelwood (L–H) model within 120 min (Hoffmann et al., 1995)

\[\ln \left(\frac{C}{C_0} \right) = -k_{app}t \]

where \(C \) is the concentration, \(C_0 \) is the initial concentration, and \(k_{app} \) is the constant of kinetic absorption and \(t \) is time.

![Fig. 4 – Ultraviolet-visible light absorption diffuse reflectance spectrum (DRS) patterns of Pd-MnO2/TiO2 NTAs and bare TiO2 NTAs photoelectrodes. NTAs: TiO2 nanotube arrays.](image1)

![Fig. 6 – Photocurrent response of bare TiO2 NTAs and Pd-MnO2/TiO2 NTAs photoelectrodes.](image2)

![Fig. 5 – XPS (X-ray photoelectron spectroscopy) spectra diagram of (a) survey spectra, (b) Mn 2p spectrum, (c) O 1s spectrum and (d) Pd 3d spectrum. B.E.: binding energy.](image3)
The fabricated Pd-MnO$_2$/TiO$_2$ photoelectrodes displayed the highest photocatalytic activity with a rate constant at 0.0259 min$^{-1}$ under xenon light irradiation as shown in Table 1. The photocatalytic stability of the fabricated photoelectrodes, which is important for their practical application, was tested to determine if they could be regenerated and salvaged. The concentration and stability of the solution of the designated organic pollutant (Rhodamine B) was kept in the dark and saved in black agar containers. Before administering the photodegradation process the mixture is agitated for 20 min inside an isolated metal box to reach a state of adsorption–desorption equilibrium. Afterwards the Pd-MnO$_2$ Photocatalyst is fixed in the photoreactor and illuminated for 2 hr. This process was repeated for seven successive-cycles. The results show that the catalyst exhibited catalytic performance without any significant deactivation, revealing its high stability after multiple reuses. There is no significant difference between the performance of the photoelectrode at the first cycle and the last one, and the degradation ratio deference is approximately – (2%–2.5%), the stability results are shown in Fig. 9.

3. Conclusions

Pd-MnO$_2$ nano particles were successfully codoped and loaded onto the surface of the fabricated TiO$_2$ nanotube photoelectrodes via the electrodeposition of MnO$_2$ in 3 electrodes cell, followed by annealing in a muffled furnace, afterwards, Pd particles were electrodeposited onto the obtained electrode via 3 electrodes electrodeposition cells. SEM results indicated the existence of the deposited particles onto the surface of the titanium dioxide nanotubes photoelectrodes, while the XRD analysis illustrated the existence of MnO$_2$, though it did not show Pd peaks, which could be due to Pd particle form or low composition. The existence of Pd and MnO$_2$ was determined by performing XPS analysis which showed that all targeted elements were successfully electrodeposited onto the surface of TiO$_2$ NTAs photoelectrodes. DRS analysis distinguished the difference of illumination absorption between bare TiO$_2$ and Pd-MnO$_2$/TiO$_2$, which had shown superior absorbance of illumination of UV light ($\lambda < 400$ nm) and intense visible light absorption ranging from 400 to 800 nm. The results of Rhodamine B degradation have shown significant difference between Pd/TiO$_2$, MnO$_2$/TiO$_2$ and Pd-MnO$_2$/TiO$_2$ NTAs photoelectrodes, when Pd/TiO$_2$ having shown greater efficiency than MnO$_2$ photoelectrodes, while the...
combination of both materials expressed outstanding photocatalytic performance for the degradation of Rhodamine B because the decoration of Pd-MnO₂, which could provide the pathway for the transfer of the charge carrier. Furthermore, the contribution of series of active species scavengers demonstrated that •OH was the dominate species in the photocatalytic process. The remarkable stability shown by Pd-MnO₂/TiO₂ samples makes it a considerable candidates for the environmental applications of photocatalytic processes.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51178138), the National Creative Research Groups of China (No. 51121062) and the State Key Laboratory of Urban Water Resources and Environment (No. 2010DX03).

References

