Aquatic environment

Groundwater contamination and natural attenuation capacity at a petroleum spilled facility in Korea


Hyun-Mi Choi , Jin-Yong Lee

DOI:10.1016/S1001-0742(10)60568-2

Received October 22, 2010,Revised December 21, 2010, Accepted , Available online

Volume 23,2011,Pages 1650-1659

As a remedial option, the natural attenuation capacity of a petroleum contaminated groundwater at a military facility was examined. Hydrogeological conditions, such as high water level, permeable uppermost layer and frequent heavy rainfall, were favorable to natural attenuation at this site. The changes in the concentrations of electron acceptors and donors, as well as the relevant hydrochemical conditions, indicated the occurrence of aerobic respiration, denitrification, iron reduction, manganese reduction and sulfate reduction. The calculated BTEX expressed biodegradation capacity ranged between 20.52 and 33.67 mg/L, which appeared effective for the reduction of the contaminants levels. The contribution of each electron accepting process to the total biodegradation was in the order: denitrification > iron reduction > sulfate reduction > aerobic respiration > manganese reduction. The BTEX and benzene point attenuation rates were 0.0058-0.0064 and 0.0005-0.0032 day-1, respectively, and the remediation time was 0.7-1.2 and 2.5-30 years, respectively. The BTEX and benzene bulk attenuation rates were 8.69 × 10-4 and 1.05 × 10-3 day-1, respectively, and the remediation times for BTEX and benzene were 7.2 and 17.5 years, respectively. However, most of the natural attenuation occurring in this site can be attributed to dilution and dispersion. Consequently, the biodegradation and natural attenuation capacities were good enough to lower the contaminants levels, but their rates appeared to be insufficient to reach the remediation goal within a reasonable time frame. Therefore, some active remedial measures would be required.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3