Terrestrial environment

Mechanism of lead immobilization by oxalic acid-activated phosphate rocks


Guanjie Jiang , Yonghong Liu , Li Huang , Qingling Fu , Youjun Deng , Hongqing Hu

DOI:10.1016/S1001-0742(11)60836-X

Received June 23, 2011,Revised July 21, 2011, Accepted , Available online May 06, 2012

Volume 24,2012,Pages 919-925

Lead (Pb) chemical fixation is an important environmental aspect for human health. Phosphate rocks (PRs) were utilized as an adsorbent to remove Pb from aqueous solution. Raw PRs and oxalic acid-activated PRs (APRs) were used to investigate the effect of chemical modification on the Pb-binding capacity in the pH range 2.0-5.0. The Pb adsorption rate of all treatments above pH 3.0 reached 90%. The Pb binding on PRs and APRs was pH-independent, except at pH 2.0 in activated treatments. The X-ray diffraction analysis confirmed that the raw PRs formed cerussite after reacting with the Pb solution, whereas the APRs formed pyromorphite. The Fourier Transform Infrared spectroscopy analysis indicated that carbonate (CO32-) in raw PRs and phosphate (PO43-) groups in APRs played an important role in the Pb-binding process. After adsorption, anomalous block-shaped particles were observed by scanning electron microscopy with energy dispersive spectroscopy. The X-ray photoelectron spectroscopy data further indicated that both chemical and physical reactions occurred during the adsorption process according to the binding energy. Because of lower solubility of pyromorphite compared to cerussite, the APRs are more effective in immobilizing Pb than that of PRs.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3