Environmental biology

Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation


Weisong Pan , Chuan Wu , Shengguo Xue , William Hartley

DOI:10.1016/S1001-0742(13)60483-0

Received May 18, 2013,Revised October 23, 2013, Accepted , Available online March 24, 2014

Volume 26,2014,Pages 892-899

A pot experiment was conducted to investigate the effects of root oxidation on arsenic (As) dynamics in the rhizosphere and As sequestration on rice roots. There were significant differences (P < 0.05) in pH values between rhizosphere and non-rhizosphere soils, with pH 5.68-6.16 in the rhizosphere and 6.30-6.37 in non-rhizosphere soils as well as differences in redox potentials (P < 0.05). Percentage arsenite was lower (4%-16%) in rhizosphere soil solutions from rice genotypes with higher radial oxygen loss (ROL) compared with genotypes with lower ROL (P < 0.05). Arsenic concentrations in iron plaque and rice straw were significantly negatively correlated (R = -0.60, P < 0.05). Genotypes with higher ROL (TD71 and Yinjingruanzhan) had significantly (P < 0.001) lower total As in rice grains (1.35 and 0.96 mg/kg, respectively) compared with genotypes with lower ROL (IAPAR9, 1.68 mg/kg; Nanyangzhan 2.24 mg/kg) in the As treatment, as well as lower inorganic As (P < 0.05). The present study showed that genotypes with higher ROL could oxidize more arsenite in rhizosphere soils, and induce more Fe plaque formation, which subsequently sequestered more As. This reduced As uptake in aboveground plant tissues and also reduced inorganic As accumulation in rice grains. The study has contributed to further understanding the mechanisms whereby ROL influences As uptake and accumulation in rice.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3