Synthesis of a novel illite@carbon nanocomposite adsorbent for removal of Cr(VI) from wastewater


Gaofeng Wang , Shan Wang , Wen Sun , Zhiming Sun , Shuilin Zheng

DOI:10.1016/j.jes.2016.10.017

Received June 27, 2016,Revised August 25, 2016, Accepted October 27, 2016, Available online November 27, 2016

Volume 29,2017,Pages 62-71

A novel illite@carbon (I@C) nanocomposite adsorbent has been synthesized via a facile hydrothermal carbonization process (HTC) using glucose as carbonaceous source and illite as the carrier. The morphology, microstructure and surface properties of the prepared nanocomposite adsorbent were analyzed by FESEM, TGA, XRD, FT-IR and Zeta potential measurements. Batch experiments were carried out on the adsorption of Cr(VI) to determine the adsorption properties of the composite. The adsorption of Cr(VI) onto the I@C nanocomposite was well described by the pseudo-second-order kinetic model and Langmuir isotherm. Compared with the illite and carbon material (SC) separately, the prepared I@C nanocomposite adsorbent exhibited enhanced adsorption performance for Cr(VI) with a maximum adsorption capacity of 149.25 mg/g, which was higher than that of most reported adsorbents. In addition, the adsorption process was spontaneous and endothermic based on the adsorption thermodynamics study. The adsorption of Cr(VI) by I@C was highly pH-dependent and the optimum adsorption occurred at pH 2.0. The Zeta potential analysis results indicated that the electrostatic interactions between anionic Cr(VI) and the positively charged surface of the adsorbent might be critical to the adsorption mechanism. This study demonstrated that the I@C nanocomposite should be a promising candidate for a low-cost, environmental friendly and highly efficient adsorbent for the removal of toxic Cr(VI) from wastewater.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3