Insights into multidimensional transport flux from vertical observation and numerical simulation in two cities in North China

Yibin Fu , Zhida Zhang , Xiaoqi Wang , Shuiyuan Cheng , Guiqian Tang


Received August 17, 2021,Revised , Accepted November 12, 2021, Available online May 11, 2022

Volume 35,2023,Pages 831-842

This study represents the first quantitative evaluation of pollution transport budget within the boundary layer of typical cities in the Beijing-Tianjin-Hebei (BTH) region from the perspective of horizontal and vertical exchanges and further discusses the impact of the atmospheric boundary layer (ABL)-free troposphere (FT) exchange on concentration of fine particulate matter (PM2.5) within the ABL during heavy pollution. From the perspective of the transport flux balance relationship, differences in pollution transport characteristics between the two cities is mainly reflected in the ABL-FT exchange effect. The FT mainly flowed into the ABL in BJ, while in SJZ, the outflow from the ABL to the FT was more intense. Combined with an analysis of vertical wind profile distribution, BJ was found to be more susceptible to the influence of northwest cold high prevailing in winter, while sinking of strong cold air allowed the FT flowing into the ABL influence the vertical exchange over BJ. In addition, we selected a typical pollution event for targeted analysis to understand mechanistic details of the influence of ABL-FT exchange on the pollution event. These results showed that ABL-FT interaction played an important role in PM2.5 concentration within the ABL during heavy pollution. Especially in the early stage of heavy pollution, FT transport contributed as much as 82.74% of PM2.5 within the ABL. These findings are significant for improving our understanding of pollution transport characteristics within the boundary layer and the effect of ABL-FT exchange on air quality.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3