Insights into a novel nitrogen removal process based on simultaneous anammox and denitrification (SAD) following nitritation with in-situ NOB elimination


Hong Chen , Jing Chen , Jia Zeng , Yiran He , Shiquan Sun , Haipeng Wu , Yaoyu Zhou , Zhenguo Chen , Jianhui Wang

DOI:10.1016/j.jes.2022.01.019

Received November 28, 2021,Revised , Accepted January 12, 2022, Available online February 03, 2022

Volume 35,2023,Pages 160-170

Simultaneous anammox and denitrification (SAD) is an efficient approach to treat wastewater having a low C/N ratio; however, few studies have investigated a combination of SAD and partial nitritation (PN). In this study, a lab-scale up-flow blanket filter (UBF) and zeolite sequence batch reactor (ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen (TN) removal efficiency of over 70% during the start-up stage (days 1–50), and reached a TN removal efficiency of 96% in the following 90 days (days 51–140) at COD/NH4+-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107 copies/µL DNA; Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN (66.5% ± 4.5%) and COD (71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3