Chlorine substitution-dependent toxicities of polychlorinated biphenyls to the earthworm Eisenia fetida in soil

Daohui Lin , Jianying Zhang , Mengyang He , Yaoxuan Liu , Lei Zhang , Haojie Jiang


Received July 06, 2022,Revised , Accepted July 20, 2022, Available online July 30, 2022

Volume 35,2023,Pages 171-180

Polychlorinated biphenyls (PCBs) with different chlorine substitution patterns often coexist in e-waste-processing sites. However, the single and combined toxicity of PCBs to soil organisms and the influence of chlorine substitution patterns remain largely unknown. Herein, we evaluated the distinct in vivo toxicity of PCB28 (a trichlorinated PCB), PCB52 (a tetrachlorinated PCB), PCB101 (a pentachlorinated PCB), and their mixture to earthworm Eisenia fetida in soil, and looked into the underlining mechanisms in an in vitro test using coelomocytes. After a 28-days exposure, all PCBs (up to 10 mg/kg) were not fatal to earthworms, but could induce intestinal histopathological changes and microbial community alterations in the drilosphere system, along with a significant weight loss. Notably, pentachlorinated PCBs with a low bioaccumulation ability showed greater inhibitory effects on the growth of earthworm than lowly chlorinated PCBs, suggesting that bioaccumulation was not the main determinant of chlorine substitution-dependent toxicity. Furthermore, in vitro assays showed that the highly chlorinated PCBs induced a high-percentage apoptosis of eleocytes in the coelomocytes and significantly activated antioxidant enzymes, indicating that the distinct cellular vulnerability to lowly/highly chlorinated PCBs was the main contributor to the PCBs toxicity. These findings emphasize the specific advantage of using earthworms in the control of lowly chlorinated PCBs in soil due to their high tolerance and accumulation ability.

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.京ICP备05002858号-3